Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The potential of two-dimensional (2D) transition metal dichalcogenides (TMDs), especially molybdenum telluride (MoTe), in sophisticated electrical and low-energy neuromorphic applications, has attracted a lot of interest. The creation, characteristics, and uses of MoTe-based memristive devices are summarized in this review paper, with an emphasis on their potential as artificial synapses for neuromorphic computing. We thoroughly examine the special properties of MoTe, such as its remarkable resistance switching response, excellent linearity in synaptic potentiation, and customizable phase states. These characteristics make it possible to implement basic computational functions with minimal energy consumption, including decimal arithmetic operations and the commutative principles of addition and multiplication. In addition to simulating intricate synaptic processes such as long-term potentiation (LTP), long-term depression (LTD), and spike-timing-dependent plasticity (STDP), the article emphasizes the experimental performances of MoTe memristors, which include their capacity to execute exact decimal arithmetic operations. The demonstration of centimeter-scale 2D MoTe film-based memristor arrays attaining over 90% recognition accuracy in handwritten digit identification tests further demonstrates the devices' great scalability, stability, and incorporation capabilities. Notwithstanding these developments, issues such as poor environmental robustness, phase transition sensitivity, and low thermal stability still exist. The creation of hybrid or composite materials, doping, and structural alteration are some of the methods to get beyond these obstacles that are covered in the paper. The need for scalable, economical synthesis techniques and a better comprehension of the material's mechanical, optical, and electrical properties through modeling and experiments are emphasized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5nr01509j | DOI Listing |