Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: The locus coeruleus (LC) is linked to the development and pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD). Magnetic resonance imaging-based LC features have shown potential to assess LC integrity in vivo.

Methods: We present a deep learning-based LC segmentation and feature extraction method called Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) and apply it to healthy aging and AD dementia datasets. Agreement to expert raters and previously published LC atlases were assessed. We aimed to reproduce previously reported differences in LC integrity in aging and AD dementia and correlate extracted features to cerebrospinal fluid (CSF) biomarkers of AD pathology.

Results: ELSI-Net demonstrated high agreement to expert raters and published atlases. Previously reported group differences in LC integrity were detected and correlations to CSF biomarkers were found.

Discussion: Although we found excellent performance, further evaluations on more diverse datasets from clinical cohorts are required for a conclusive assessment of ELSI-Net's general applicability.

Highlights: We provide a thorough evaluation of a fully automatic locus coeruleus (LC) segmentation method termed Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) in aging and Alzheimer's disease (AD) dementia.ELSI-Net outperforms previous work and shows high agreement with manual ratings and previously published LC atlases.ELSI-Net replicates previously shown LC group differences in aging and AD.ELSI-Net's LC mask volume correlates with cerebrospinal fluid biomarkers of AD pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069022PMC
http://dx.doi.org/10.1002/dad2.70118DOI Listing

Publication Analysis

Top Keywords

locus coeruleus
20
alzheimer's disease
12
coeruleus segmentation
12
aging alzheimer's
8
ensemble-based locus
8
segmentation network
8
network elsi-net
8
aging dementia
8
agreement expert
8
expert raters
8

Similar Publications

Photostimulation of locus coeruleus CA1 catecholaminergic terminals reversed Spatial memory impairment in an alzheimer's disease mouse model.

Psychopharmacology (Berl)

September 2025

División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico.

Rationale: One of the earliest changes associated with Alzheimer's disease (AD) is the loss of catecholaminergic terminals in the cortex and hippocampus originating from the Locus Coeruleus (LC). This decline leads to reduced catecholaminergic neurotransmitters in the hippocampus, affecting synaptic plasticity and spatial memory. However, it is unclear whether restoring catecholaminergic transmission in the terminals from the LC may alleviate the spatial memory deficits associated with AD.

View Article and Find Full Text PDF

Repetitive stress decreases norepinephrine's dynamic range in the auditory cortex.

Neuropharmacology

September 2025

Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel; Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel. Electronic address:

Norepinephrine (NE) is a key neuromodulator in the brain with a wide range of functions. It regulates arousal, attention, and the brain's response to stress, enhancing alertness and prioritizing relevant stimuli. In the auditory domain, NE modulates neural processing and plasticity in the auditory cortex by adjusting excitatory-inhibitory balance, tuning curves, and signal-to-noise ratio.

View Article and Find Full Text PDF

Background: Sodium homeostasis is crucial for physiological balance, yet the neurobiological mechanisms underlying sodium appetite remain incompletely understood. The nucleus tractus solitarii (NTS) integrates visceral signals to regulate feeding behaviors, including sodium intake. This study investigated the role of 11β-hydroxysteroid dehydrogenase type 2 (HSD2)-expressing neurons in the NTS in mediating sodium appetite under low-sodium diet (LSD) conditions and elucidated the molecular pathways involved, particularly the cyclic adenosine monophosphate (cAMP)/mitogen-activated protein kinase (MAPK) signaling cascade.

View Article and Find Full Text PDF

Introduction: The α-adrenoceptor (αAR) is involved in the physiopathology of the central nervous system (CNS), but its function in the adult male rat locus coeruleus (LC) has not been fully studied. We aimed to characterize the role of the αAR in the regulation of the firing rate (FR) of LC neurons and to describe the signaling pathways involved.

Methods: We measured, through single-unit extracellular recordings of LC neurons from adult male rats were used to measure the effect of adrenergic agonists in the presence and absence of adrenergic antagonists or inhibitors of several signalling pathways.

View Article and Find Full Text PDF

Social isolation promotes hyperglycemia through sympathetic activation of inguinal white adipose tissue.

Biochem Biophys Res Commun

September 2025

Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China. Electronic address:

Epidemiological studies have reported that social isolation increases the risk of diabetes, but the underlying neural mechanism remains unclear. Using a long-term single-housed (SH) mouse model of social isolation, SH mice not only exhibited disrupted glucose homeostasis, evidenced by elevated fasting glucose, impaired glucose tolerance, and reduced insulin sensitivity, but also showed hypertrophic adipocytes and altered lipid metabolism. To elucidate the neural mechanisms underlying these metabolic disturbances, retrograde trans-synaptic tracing revealed the paraventricular nucleus (PVN) and locus coeruleus (LC) as the most PRV-labeled brain regions, suggesting their potential roles in social isolation-induced hyperglycemia.

View Article and Find Full Text PDF