98%
921
2 minutes
20
For antibiotics that target Gram-positive bacterial cell structures, optimizing their interaction with the cytoplasmic membrane is of paramount importance. Recent time-resolved second harmonic scattering (trSHS) experiments with living bacterial cells have shown that some amphiphilic small molecules display signals consistent with organization within the membrane environment. Such organization could arise, for example, from aggregation, solvent interactions, and/or environmental rigidity. To expand our study of this system, we turn to polarization-resolved SHS (pSHS). PSHS has previously been used with model membranes to extract information about the angular distribution of integrated small molecules. Here we apply pSHS, for the first time, to cells, specifically living . In doing so, we aim to address contributions ascribed to the organization of amphiphilic molecules in bacterial membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070223 | PMC |
http://dx.doi.org/10.1117/12.3028197 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Institute of Colloid and Biointerface Science, Institute of Colloid and Biointerface Science, BOKU University, 1190 Vienna, Austria.
Implant-associated infections caused by bacterial biofilms remain a major clinical challenge, with high morbidity, often necessitating prolonged antibiotic therapy or implant revision surgery. To address the need for noninvasive alternatives, we investigated the use of alternating magnetic fields (AMFs) as a localized treatment modality for eradicating biofilms on titanium implant model surfaces. We demonstrate that AMF exposure effectively removes biofilms and kills bacteria at moderately elevated temperatures on the implant.
View Article and Find Full Text PDFJ Obstet Gynaecol Res
September 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.
Purpose: Preterm premature rupture of membranes (PPROM) is a major contributor to preterm birth and is associated with increased risks of maternal and neonatal complications. The aim of this review is to summarize current antibiotic strategies and explore emerging adjunctive therapies, including probiotics, amnioinfusion, and fetal membrane repair, to improve the management of PPROM.
Methods: Relevant literature on antibiotic therapy for PPROM and emerging treatment strategies was systematically retrieved from PubMed.
Biotechnol Adv
September 2025
DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Henrik Dams Allé, B202, 2800 Kongens Lyngby, Denmark. Electronic address:
Electric fields significantly influence bacterial cells by altering their physiology, membrane properties, membrane potential, and permeability, as well as their metabolism and mobility. These interactions result in observable changes in growth rates, cellular morphology, and gene expression. This review provides a comprehensive examination of the effects of electric fields on bacterial cells, focusing specifically on mechanisms such as electro-stimulation, electroporation, electrophoresis, and dielectrophoresis.
View Article and Find Full Text PDFMem Inst Oswaldo Cruz
September 2025
Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil.
Background: Parasite antigens and plasma lipopolysaccharide (LPS) levels from luminal origin in visceral leishmaniasis (VL) patients are correlated with cellular activation and low CD4+T cell counts.
Objectives: Our aim was to verify whether Leishmania infantum infection damages the intestinal barrier and whether combination antimonial/antibiotic contributes to the reduction of LPS levels and immune activation.
Methods: Golden hamsters were grouped in: G1-uninfected; G2-infected with L.
Cell Rep
September 2025
Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ON L8S 4K
Many Gram-negative bacteria use type VI secretion systems (T6SSs) to deliver toxic effector proteins into neighboring cells. Proteins in the VasX toxin family form ion-permeable channels in the bacterial cytoplasmic membrane that dissipate the proton motive force, thereby interfering with essential physiological processes. However, the structure of any VasX family effector has remained unknown.
View Article and Find Full Text PDF