Identification of the Plant Defensin (MsPDF) Gene Family in and Analysis of Expression Patterns Under Abiotic Stress.

Plants (Basel)

Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

L. (alfalfa) is a major forage crop due to its high yield and stress resilience. However, its growth and productivity are often compromised by abiotic stresses, including cold, drought, and salinity. The plant defensin (PDF) gene family plays a crucial role in resistance to abiotic stress. In this study, a total of 11 MsPDF gene family members were identified in the alfalfa genome and classified into three groups. Phylogenetic and conserved motif analyses revealed that the MsPDF genes are highly conserved. Promoter analysis, gene regulatory network analysis (GRN), and gene ontology (GO)-enrichment analyses were used to infer the potential functions of genes. The results showed that the gene actively responds to abiotic stress, participates in phytohormonal responses, and regulates plant growth and development through gene interactions. Transcriptome and qRT-PCR analyses showed that most of the genes were significantly up-regulated under cold, drought, and salinity stresses. Among them, the exhibited superior performance under cold stress. The , , and genes were able to respond positively to drought and salt stresses. Finally, the monomeric, dimeric, and tetrameric structures of the proteins encoded by the genes were predicted using AlphaFold 2 software. This study lays the foundation for the identification and evolutionary relationship analysis of the MsPDF gene family, and provides a new reference for subsequent research on abiotic stress resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073698PMC
http://dx.doi.org/10.3390/plants14091312DOI Listing

Publication Analysis

Top Keywords

gene family
16
abiotic stress
16
mspdf gene
12
plant defensin
8
gene
8
cold drought
8
drought salinity
8
stress
6
abiotic
5
genes
5

Similar Publications

Astragaloside IV Binds with RhoA, Inhibits EndMT and Ameliorates Myocardial Fibrosis in Mice.

Am J Chin Med

September 2025

Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

Astragaloside IV (ASIV), the main active component of the traditional Chinese medicine HuangQi, exhibits ameliorating effects on myocardial fibrosis through unclear mechanisms. To investigate the effects of ASIV on Endothelial-to-mesenchymal transition (EndMT) in myocardial fibrosis, 10 ng/mL TGF-β1 was used to induce EndMT in human umbilical vein endothelial cells (HUVECs) and a 5 mg/kg/d subcutaneous injection of Isoproterenol (ISO) was used to induce myocardial fibrosis in mice . The drug affinity-responsive target stability (DARTS) was used to identify the target proteins of ASIV in endothelial cells.

View Article and Find Full Text PDF

Antibacterial mode of action of thyme white (Thymus vulgaris L.) essential oil and its constituents, thymol and carvacrol against Agrobacterium tumefaciens via down-regulation of manganese transport genes, sitABCD and mntH.

Pestic Biochem Physiol

November 2025

Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of

In this study, we evaluated the antibacterial activities of plant essential oils (EOs) from the Lamiaceae family against Agrobacterium tumefaciens to find new eco-friendly antimicrobials. Thymus vulgaris L. (thyme white) EO demonstrated the most potent fumigant antibacterial activity among these.

View Article and Find Full Text PDF

Environmental stressor-induced functional and expression dynamics of glutathione S-transferase genes in bees.

Pestic Biochem Physiol

November 2025

College of Life Sciences, Chongqing Normal University, Chongqing, China; Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Chongqing Key Laboratory of Vector Control and Utilization, Chongqing,

As key pollinators, bees are increasingly threatened by environmental stressors such as heavy metals, pesticides, and temperature fluctuations, which can cause oxidative stress and disrupt cellular homeostasis. Glutathione S-transferases (GSTs) play crucial roles in antioxidant defense and detoxification, yet systematic studies on bee GST families remain limited. Here, we conducted a genome-wide analysis of cytosolic GST genes in 13 bee species, identifying 146 genes in total.

View Article and Find Full Text PDF

Unravelling the novel mode of action of the spinosyn insecticides: A 25 year review.

Pestic Biochem Physiol

November 2025

Corteva Agriscience, Indianapolis, IN 46268, USA; Retired - Present address Agrilucent LLC, Morro Bay, CA 93442, USA.

Since their registration more than 25 years ago, the spinosyns have become a significant insect management tool in farmers' battles to protect crop quality and yield. Spinosad (Qalcova™ active) and spinetoram (Jemvelva™ active), the two members of the Insecticide Resistance Action Committee (IRAC) Group 5 nicotinic acetylcholine receptor (nAChR) allosteric modulators Site I, class of insecticides, have proven highly effective at controlling chewing insect pests on over 250 different crops. Their importance as an integral rotation partner in insect pest management programs has stimulated a large body of research into their mode of action (MoA) and mechanisms of resistance.

View Article and Find Full Text PDF

Knockdown of Clavesin family genes NlClvs1l, NlClvs1t, and NlClvs2l in Nilaparvata lugens reveals their potential as novel targets for pest control strategies.

Pestic Biochem Physiol

November 2025

Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, School of Life Sciences, China Jiliang University, Hangzhou 310018, China. Electronic a

The brown planthopper (BPH) Nilaparvata lugens is one of the most destructive pests of rice, and its management has primarily relied on chemical insecticides. Currently, the chemical management of BPH is facing challenges due to the development of pesticide resistance. RNA interference (RNAi) provides attractive alternative to chemical insecticides, provided that suitable target genes are identified.

View Article and Find Full Text PDF