Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To tackle the pollution of tetracycline (TC) in aqueous environments, a few treatment methods, including ozonation, adsorption, and photocatalytic degradation, were compared using a novel and sustainable granular activated carbon-based zinc oxide nanoparticle (ZnO@GAC) composite. The results demonstrate that the ZnO@GAC composite towards TC exhibited a high removal efficiency of 82.1% in a batch adsorption system. Moreover, the photocatalytic TC degradation study on ZnO@GAC under UV light yields a maximum degradation efficiency of 86.4% with a pseudo-first-order rate constant value of 0.0059 min. Ozonation treatment resulted in TC and total organic carbon (TOC) removal reaching a maximum of 95.3% and 79.7% for 4 mg O/min and 99.6% and 86.6% for 16 mg O/min after 10 min. Overall, in comparing the adsorption, photocatalysis, and ozonation techniques, in terms of removal efficiency and time, ozonation was found to be more promising for treating TC, while in terms of cost-effectiveness, the adsorption process is preferable. Finally, the application of the developed composite in municipal and hospital wastewater using adsorption, photocatalytic degradation, and ozonation techniques revealed that the TOC removal efficiencies were higher for hospital wastewater than municipal wastewater. Furthermore, the applicability of these techniques in treating hospital wastewater containing pharmaceuticals, antibiotics, fungicides, and antimicrobial pollutants shows an outstanding result after treatment. In conclusion, the technologies studied in this research can significantly improve the efficiency and effectiveness of wastewater treatment applications, providing a sustainable, cost-effective, and eco-friendly solution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12072928PMC
http://dx.doi.org/10.3390/ma18092134DOI Listing

Publication Analysis

Top Keywords

photocatalytic degradation
12
hospital wastewater
12
treatment methods
8
adsorption photocatalytic
8
zno@gac composite
8
removal efficiency
8
toc removal
8
ozonation techniques
8
wastewater
6
treatment
5

Similar Publications

Characterization, photocatalysis, antimicrobial and antioxidant activities of manganese oxide nanoparticles green synthesis using seed extract.

Int J Phytoremediation

September 2025

Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.

This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.

View Article and Find Full Text PDF

The degradation of colorless tetracycline hydrochloride (TCH), a widely used antibiotic, is a significant environmental concern due to its persistence in aquatic systems. The zinc sulfide (ZnS) nanoparticle fabricated melamine-formaldehyde polymer (MFP)-based nanocomposite (ZnS-MFP) was prepared via a hydrothermal polymerization method, followed by surface modification through a simple precipitation route. The degradation of TCH through photocatalysis adheres to pseudo-first-order kinetics with a significantly faster rate under natural sunlight than under artificial bulb light.

View Article and Find Full Text PDF

Thin films of CuSn Gd S were prepared on soda-lime glass substrates using spin coating in a sulfur-rich environment. We investigated how doping CuSnS with gadolinium (Gd) affected its structural, morphological, and optical properties using X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), and UV-Vis spectroscopy. XRD showed that all samples had a polycrystalline monoclinic structure, while FE-SEM revealed a mix of spherical and polygon-shaped grains.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.

View Article and Find Full Text PDF

Designing heterostructure-based nanocomposites has gained considerable interest in solving energy scarcity and environmental contamination issues. Herein, a heterojunction assembly of ternary SnS/MoS/g-CN nanocomposites with varying Sn and Mo weight ratios was synthesized through a single-step hydrothermal method. At an optimized ratio of tin to molybdenum (1 : 2), denoted as SM-3, promising electrochemical and photocatalytic performances were observed compared to bare SnS/g-CN and MoS/g-CN.

View Article and Find Full Text PDF