A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Research on the Influence of Recycled Fine Powder on Chloride Ion Erosion of Concrete in Different Chloride Salt Environments. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Qinghai-Tibet Plateau features a high-altitude, cold, and arid climate, with harsh environmental conditions. It is also one of the regions in China where chloride-rich salt lakes are abundant. These circumstances pose significant challenges to the durability of concrete. This study explored the impact of recycled fine powders (RFP) on the resistance of concrete to chloride ion erosion. To evaluate this, a 3.5% sodium chloride solution and Qarhan Salt Lake brine were employed as erosion media. The depth and concentration of chloride ion penetration, the free chloride ion diffusion coefficient (D), and the microstructure of the concrete were measured. The results demonstrated that when the replacement rate of RFP was 20%, the concrete displayed excellent resistance to chloride ion erosion in both the sodium chloride solution and the Salt Lake brine. XRD analysis and SEM images revealed that the addition of RFP enabled the concrete to bind more Cl to form Friedel's salt, which filled the pores of the concrete and reduced the diffusion of Cl within the concrete. Moreover, as the soaking time extended continuously, the erosion and damage effects of the Salt Lake brine solution on the concrete were more severe than those of the sodium chloride solution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073070PMC
http://dx.doi.org/10.3390/ma18092018DOI Listing

Publication Analysis

Top Keywords

chloride ion
20
ion erosion
12
sodium chloride
12
chloride solution
12
salt lake
12
lake brine
12
chloride
9
concrete
9
recycled fine
8
concrete chloride
8

Similar Publications