98%
921
2 minutes
20
Background/objectives: this study evaluated the differential effects of two distinct dietary nucleotide supplements, combined with spontaneous physical activity, on neuromuscular, cognitive, and metabolic adaptations in older adults.
Methods: Sixty-nine physically independent older adults (aged 60-75 years) were randomly assigned to three groups: (1) a yeast nucleotides formulation (YN) standardized in a high content of free nucleotides (>40%) rich in all macro and micro nutrients naturally occurring in yeast cell (amino acids, minerals and B-group vitamin); (2) a neuro-based formulation (NF) consisting of a blend of monophosphate nucleotides 5'; or (3) a placebo. Participants maintained their spontaneous physical activities without structured exercise during a 10-week intervention. Assessments included physical function, cognitive performance, body composition, quality of life, and serum biomarkers of oxidative stress, inflammation, and neurogenesis.
Results: Both nucleotide-supplemented groups demonstrated significant improvements compared to placebo in physical performance ( ≤ 0.045), cognitive function (Trail Making Test B [TMT-B]: ≤ 0.012), oxidative stress biomarkers ( ≤ 0.048), inflammatory cytokines ( ≤ 0.023), and quality-of-life parameters ( ≤ 0.047). Body composition remained stable in supplemented groups, whereas placebo increased fat mass (5.04%) and decreased muscle mass (-2.18%).
Conclusions: Dietary nucleotide supplementation enhances the benefits of spontaneous physical activity across all measured variables in older adults, highlighting nucleotides as promising nutritional support for healthy aging. YN exhibited a trend toward greater inflammatory modulation, whereas NF showed a tendency toward enhanced neurotrophic effects and functional improvements, with a statistically significant improvement in the Timed Up and Go Test ( = 0.014). These findings underscore the potential for tailored nucleotide-based interventions to optimize distinct physiological domains in aging populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073346 | PMC |
http://dx.doi.org/10.3390/nu17091431 | DOI Listing |
Abdom Radiol (NY)
September 2025
Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
Objectives: The escalating global incidence of obesity, cardiometabolic disease and sarcopenia necessitates reliable body composition measurement tools. MRI-based assessment is the gold standard, with utility in both clinical and drug trial settings. This study aims to validate a new automated volumetric MRI method by comparing with manual ground truth, prior volumetric measurements, and against a new method for semi-automated single-slice area measurements.
View Article and Find Full Text PDFEur J Heart Fail
September 2025
Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.
Aims: Obesity is commonly hypothesized to lead to the development of heart failure (HF) in part due to increases in blood volume (BV) and left ventricular (LV) remodelling. Whether adiposity and obesity severity are associated with BV expansion and subsequent LV remodelling in middle-aged individuals at increased risk (IR) prior to the onset of HF is unknown.
Methods And Results: We analysed data from 96 middle-aged (40-64 years) non-obese (25.
Pediatr Pulmonol
September 2025
Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA.
Background: The approval of cystic fibrosis transmembrane conductance regulator modulators elexacaftor/tezacaftor/ivacaftor (ETI), has significantly improved pulmonary function for people with cystic fibrosis (pwCF). However, the effects on CF-related bone disease and body composition remain unclear.
Methods: This retrospective real-world study examined adults with CF who received ETI treatment.
Int J Environ Health Res
September 2025
Unidad Interinstitucional de Investigación Clínica y Epidemiológica, Facultad de Medicina, Universidad Autónoma de Yucatán, Mérida, México.
The human microbiota consists of millions of microorganisms, predominantly bacteria, that inhabit the body and form communities. Each human body site has a unique population that is specifically adapted to complement the metabolic functions of the environments in which they are present. These microbial communities begin to form at birth, with their primary establishment occurring during the early years of childhood and persisting in adulthood.
View Article and Find Full Text PDFJ Obes
September 2025
School of Natural Sciences, University of Lincoln, Lincoln, UK.
To investigate the genetic determinants of fat distribution across anatomical sites and their implications for health outcomes. We analyzed neck-to-knee MRI data from the UK Biobank ( = 37,589) to measure fat at various locations and used Mendelian randomization to assess effects on 26 obesity-related diseases and 94 biomarkers from FinnGen and other consortia. We identified genetic loci associated with 10 fat depots: abdominal subcutaneous adipose tissue ( = 2 loci), thigh subcutaneous adipose tissue (25), thigh intermuscular adipose tissue (15), visceral adipose tissue (7), liver proton density fat fraction (PDFF) (8), pancreas PDFF (11), paraspinal adipose tissue (9), pelvic bone marrow fat (28), thigh bone marrow fat (27), and vertebrae bone marrow fat (5).
View Article and Find Full Text PDF