98%
921
2 minutes
20
Chitinase-3-like protein 1 (CHI3L1) has been implicated in multiple sclerosis (MS) pathology, yet its precise role remains unclear. To elucidate its involvement, we performed proteomic analysis of cerebrospinal fluid (CSF) from relapsing-remitting MS (RRMS) patients using two-dimensional difference gel electrophoresis (2D-DIGE). CHI3L1 emerged as the most upregulated protein in recurrent RRMS. ELISA confirmed significantly elevated CHI3L1 levels in recurrent RRMS and secondary progressive MS (SPMS) patients, with levels decreasing in steroid responders but increasing in non-responders. Immunohistochemistry of MS brain autopsies revealed CHI3L1 expression predominantly in mature oligodendrocytes. In an experimental autoimmune encephalomyelitis (EAE) model, CHI3L1 was highly expressed in the spinal cord, particularly in oligodendrocytes and microglia/macrophages. Functional studies demonstrated that recombinant CHI3L1 (rCHI3L1) protected oligodendrocytes from LPC-induced cell death by attenuating ER stress (GRP78, ORP150). Moreover, rCHI3L1 counteracted IFN-β- and PSL-mediated inhibition of oligodendrocyte differentiation. In microglia, rCHI3L1 suppressed LPS-induced proinflammatory markers (IL-1β, iNOS). In vivo, rCHI3L1 administration significantly mitigated EAE severity by reducing gliosis, demyelination, and axonal degeneration. These findings highlight CHI3L1 as a critical modulator of neuroinflammation and oligodendrocyte survival, positioning it as a promising therapeutic target for MS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071615 | PMC |
http://dx.doi.org/10.3390/ijms26094160 | DOI Listing |
Chem Biodivers
September 2025
Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, Laboratory of Anti-Allergy Functional Compounds, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
Autoimmune diseases (AIDs), defined by irregularities in immune system function, pose a substantial health challenge worldwide, impacting millions with persistent and frequently debilitating conditions. Conventional treatments, such as glucocorticoid-based immunosuppressive therapies, are associated with notable drawbacks and limitations. In response to these difficulties, recent scientific efforts have increasingly focused on natural compounds as potential therapeutic agents.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
November 2025
Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
Background And Objectives: Myelitis is a relatively common clinical entity for neurologists, with diverse underlying causes. The aim of this study was to describe the incidence of myelitis, its causes, clinical presentation, and factors predicting functional outcomes and relapses.
Methods: Using the Swedish National Patient Registry, we identified all adult patients in Stockholm County between 2008 and 2018 using International Classification of Diseases, 10th Edition (ICD-10) codes likely to include myelitis.
Neurol Neuroimmunol Neuroinflamm
November 2025
Departments of Neurology and Ophthalmology, NYU Grossman School of Medicine, NY; and.
Background And Objectives: While reductions in optical coherence tomography (OCT) pRNFL and ganglion cell-inner plexiform layer thicknesses have been shown to be associated with brain atrophy in adult-onset MS (AOMS) cohorts, the relationship between OCT and brain MRI measures is less established in pediatric-onset MS (POMS). Our aim was to examine the associations of OCT measures with volumetric MRI in a cohort of patients with POMS to determine whether OCT measures reflect CNS neurodegeneration in this patient population, as is seen in AOMS cohorts.
Methods: This was a cross-sectional study with retrospective ascertainment of patients with POMS evaluated at a single center with expertise in POMS and neuro-ophthalmology.
Clin Transplant
September 2025
Centro De Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.
ACS Chem Neurosci
September 2025
Department of Medical Biology, Faculty of Medicine, Bahçeşehir University, Istanbul 34353, Turkey.
IL-17A is a pro-inflammatory cytokine that significantly contributes to the pathogenesis of autoimmune diseases, including multiple sclerosis (MS). Previous studies have suggested that PARP-1 inhibitors can modulate IL-17A-mediated inflammation, prompting the investigation of Niraparib, an FDA-approved PARP-1 inhibitor, as a potential therapeutic agent for MS. In this study, we hypothesized that Niraparib could disrupt the interaction between IL-17A and its receptor, IL-17RA.
View Article and Find Full Text PDF