98%
921
2 minutes
20
Arabinogalactan proteins (AGPs) constitute a diverse class of hydroxyproline-rich glycoproteins implicated in various aspects of plant growth and development. However, their functional characterization in cotton ( spp.) remains limited. As a globally significant economic crop, cotton serves as the primary source of natural fiber, making it essential to understand the genetic mechanisms underlying its growth and development. This study aims to perform a comprehensive genome-wide identification and characterization of the AGP gene family in spp., with a particular focus on elucidating their structural features, evolutionary relationships, and functional roles. A genome-wide analysis was conducted to identify AGP genes in spp., followed by classification into distinct subfamilies based on sequence characteristics. Protein motif composition, gene structure, and phylogenetic relationships were examined to infer potential functional diversification. Subcellular localization of a key candidate gene, , was determined using fluorescent protein tagging, while gene expression patterns were assessed through β-glucuronidase (GUS) reporter assays. Additionally, hormonal regulation of was investigated via treatments with methyl jasmonate (MeJA), abscisic acid (ABA), indole-3-acetic acid (IAA), and gibberellin (GA). A total of 220 AGP genes were identified in spp., comprising 19 classical AGPs, 28 lysine-rich AGPs, 55 AG peptides, and 118 fasciclin-like AGPs (FLAs). Structural and functional analyses revealed significant variation in gene organization and conserved motifs across subfamilies. Functional characterization of , an ortholog of AGP18 in , demonstrated its role in promoting epidermal hair formation in leaves and stalks. Subcellular localization studies indicated that is targeted to the nucleus and plasma membrane. GUS staining assays revealed broad expression across multiple tissues, including leaves, inflorescences, roots, and stems. Furthermore, hormonal treatment experiments showed that expression is modulated by MeJA, ABA, IAA, and GA, suggesting its involvement in hormone-mediated developmental processes. This study presents a comprehensive genome-wide analysis of the AGP gene family in cotton, providing new insights into their structural diversity and functional significance. The identification and characterization of highlight its potential role in epidermal hair formation and hormonal regulation, contributing to a deeper understanding of AGP functions in cotton development. These findings offer a valuable genetic resource for future research aimed at improving cotton growth and fiber quality through targeted genetic manipulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071561 | PMC |
http://dx.doi.org/10.3390/ijms26094159 | DOI Listing |
Turk J Pediatr
September 2025
Division of Pediatric Rheumatology, Department of Pediatrics, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
Background: We aimed to document childhood onset mevalonate kinase deficiency (MKD) and to explore treatment responses and diagnostic challenges in regions endemic to familial Mediterranean fever (FMF).
Methods: This retrospective study included patients under 18 years of age, diagnosed with MKD and followed for at least six months at the pediatric rheumatology department of Istanbul University - Cerrahpaşa Medical Faculty between 2016 and 2024.
Results: Of 33 patients, 51.
Plant Cell
September 2025
Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.
View Article and Find Full Text PDFMicrob Genom
September 2025
International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK.
High rates of mortality of the common cockle, , have occurred in the Wash Estuary, UK, since 2008. A previous study linked the mortalities to a novel genotype of , with a strong correlation between cockle moribundity and the presence of . Here, we characterize a novel iridovirus, identified by chance during metagenomic sequencing of a gradient purification of cells, with the presence also correlated to cockle moribundity.
View Article and Find Full Text PDFAnn Bot
September 2025
Royal Botanic Gardens, Kew, Richmond, Research department, Surrey, TW9 3AE, UK.
Background And Aims: Crop wild relatives (CWRs) are key resources for enhancing agricultural resilience, providing genetic traits that can improve pest resistance, abiotic stress tolerance, and nutritional composition in domesticated crops. Within the mustard family (Brassicaceae) this is especially significant in the Brassiceae tribe, which includes economically important genera for agriculture such as Brassica and Sinapis. However, while breeding programmes have historically focused on major crops within this tribe, the potential of their wild relatives, particularly for underutilised and minor crops, remains insufficiently explored.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2025
Second Institute of Oceanography, Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou 310018, PR China.
A Gram-staining-negative, non-motile, aerobic, rod-shaped bacterium, designated 14752, was isolated from a saline lake in Xinjiang Uygur Autonomous Region, China. The strain was subjected to a taxonomic study using a polyphasic approach. Strain 14752 was able to grow at 4-40 ℃ (optimum 28 ℃), pH 6.
View Article and Find Full Text PDF