Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Granulosa cell (GC) differentiation, stimulated by FSH and LH, drives oocyte maturation and follicle development. FSH promotes GC proliferation, and LH triggers ovulation. In clinical practice, hCG is used to mimic LH. Despite various controlled ovarian stimulation (COS) protocols employing exogenous gonadotropins and GnRH analogs to prevent premature ovulation, their effectiveness and safety remain debated. To identify markers predicting a positive treatment response, the secretome of gonadotropin-stimulated GC using the human granulosa-like tumor cell line (KGN) via proteomics was analyzed. Additionally, a novel 2D-FFT quantitative method was employed to assess cytoskeleton fiber aggregation and polymerization, which are critical processes for GC differentiation. Furthermore, the activation of key kinases, focal adhesion kinase (FAK), and Rho-associated coiled-coil-containing protein kinase 1 (ROCK-1), which are implicated in cytoskeleton dynamics and hormone signaling, was evaluated. The proteomic analysis revealed significant modulation of proteins involved in extracellular matrix organization, steroidogenesis, and cytoskeleton remodeling. Notably, the combined FSH/hCG treatment led to a dynamic upregulation of the semaphorin pathway, specifically semaphorin 7A. Finally, a significant reorganization of the cytoskeleton network and signaling was detected. These findings enhance our understanding of folliculogenesis and suggest potential novel molecular markers for predicting patient responses to gonadotropin stimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12072160PMC
http://dx.doi.org/10.3390/ijms26094108DOI Listing

Publication Analysis

Top Keywords

granulosa cell
8
gonadotropin stimulation
8
markers predicting
8
secretory profile
4
profile analysis
4
analysis human
4
human granulosa
4
cell gonadotropin
4
stimulation granulosa
4
cell differentiation
4

Similar Publications

Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.

Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.

View Article and Find Full Text PDF

This study investigates the effects of L-carnitine on nuclear maturation and fertilization in cattle and goat oocytes. Ovaries were collected from females with poor reproductive efficiency in the tropical climate, and cumulus-oocyte complexes (COCs) were retrieved from large antral follicles. COCs were cultured with varying concentrations of L-carnitine (0, 0.

View Article and Find Full Text PDF

Granulosa cell tumors (GCTs) are rare ovarian neoplasms, accounting for 2-5% of all ovarian cancers. Two histological types have been described: juvenile (JGCT) and adult (AGCT), the latter accounting for around 95% of the GCTs. AGCTs are mostly diagnosed at an early stage and commonly have a good prognosis.

View Article and Find Full Text PDF

Influence of oxidative stress on women's fertility: A model with a generational age Caputo's fractional derivative.

Biosystems

September 2025

IVIRMA Global Research Alliance, The Health Research Institute La Fe (IIS La Fe), Edificio Biopolo. Av. Fernando Abril Martorell, 106 - Torre A, Planta 1, Valencia, 46026, Spain; Rey Juan Carlos University, Department of Medical Specialties and Public Health, Edificio Departamental II. Av. de Atenas

Cellular aging associated with telomeric shortening plays an important role in female fertility. In addition to natural decline, due to the loss of telomeric repeats during cell division, other factors such oxidative stress (OS), accelerate telomere shortening by causing a dramatic loss of telomeric repeats. Thus, mathematical models to better understand the accelerated aging leading to infertility are lacking in the literature.

View Article and Find Full Text PDF

Estrogen inhibits granulosa cell apoptosis via nuclear receptors by suppressing death receptor and mitochondrial pathways in goat small antral follicles.

Theriogenology

September 2025

Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China. Electronic address:

Small antral follicles frequently undergo atresia due to inadequate gonadotropin support, characterized by reduced estrogen synthesis and granulosa cell (GC) apoptosis. The role of estrogen in regulating GC apoptosis during follicular atresia remains incompletely defined. Caprine small antral follicles (1-2 mm) were isolated and cultured in vitro under serum- and gonadotropin-free conditions to induce atresia, with or without 17β-estradiol (E) supplementation.

View Article and Find Full Text PDF