Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Astaxanthin plays a vital role in pigmentation, immune function, reproduction, and antioxidation in aquatic species. To clarify the molecular mechanism of astaxanthin utilization in (), we conducted a comparative transcriptome analysis on the intestine, hepatopancreas, and muscle of , fed with an astaxanthin diet and a normal diet. A total of 144 differentially expressed genes (DEGs) were identified in three tissues between the two groups. Genes related to absorption and transport, such as and the vitellogenin receptor, were upregulated in the intestine after astaxanthin supplementation, while the ileal sodium/bile acid cotransporter-like gene was downregulated. In the hepatopancreas, genes involved in lipid storage and degradation were significantly altered at the transcriptional level, including Kruppel 1-like, , δ(7)-sterol 5(6)-desaturase-like, and . In the muscle, the expression of the gene was significantly upregulated, while several actin and troponin genes were significantly downregulated. Furthermore, GSEA analysis on the transcriptomes of three tissues revealed that astaxanthin supplementation influenced the expression of genes related to antioxidation and growth, indicating that astaxanthin may have a positive impact on the growth, development, and resistance of organisms. The data from this research provide valuable insights into elucidating the molecular mechanisms underlying astaxanthin absorption and metabolism and also offer guidance for the application of astaxanthin in the aquaculture of economically important crustaceans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071124 | PMC |
http://dx.doi.org/10.3390/ani15091314 | DOI Listing |