98%
921
2 minutes
20
In polymer electrolyte membrane fuel cells (PEMFCs), substantial efforts have been made to focus on Pt and Pt alloy catalysts to enhance their catalytic performance. However, these catalysts still fail to meet practical requirements and existing PtCo catalysts face durability issues due to structural limitations. In this study, carbon-supported hybrid PtCo alloy catalysts (H-PtCo) with improved activity and durability are synthesized by reducing Co precursors onto pre-formed colloidal Pt nanoparticles. Elemental mapping via transmission electron microscopy reveals that the H-PtCo catalysts exhibit a high concentration of Co atoms near the sub-surface. This Co enrichment results from the conformal deposition of Co atoms onto Pt nanoparticles, followed by high-temperature treatment. Electrochemical characterizations, including linear sweep voltammetry (LSV) and accelerated durability test (ADT), demonstrate that the H-PtCo catalysts outperform conventional PtCo alloys (C-PtCo), synthesized via the co-reduction method of Pt and Co, in terms of oxygen reduction reaction (ORR) activity and stability. Furthermore, single-cell tests reveal that the H-PtCo catalysts significantly enhance both performance and durability compared to C-PtCo and Pt catalysts. These findings emphasize the critical role of Co atom distribution within PtCo nanoparticles in improving catalytic efficiency and long-term stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073838 | PMC |
http://dx.doi.org/10.3390/nano15090657 | DOI Listing |
Nanomaterials (Basel)
April 2025
Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
In polymer electrolyte membrane fuel cells (PEMFCs), substantial efforts have been made to focus on Pt and Pt alloy catalysts to enhance their catalytic performance. However, these catalysts still fail to meet practical requirements and existing PtCo catalysts face durability issues due to structural limitations. In this study, carbon-supported hybrid PtCo alloy catalysts (H-PtCo) with improved activity and durability are synthesized by reducing Co precursors onto pre-formed colloidal Pt nanoparticles.
View Article and Find Full Text PDF