Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to explore the changes in volatile compounds in mutton during roasting in an air fryer, using solvent-assisted flavor evaporation-gas chromatography-mass spectrometry (SAFE-GC-MS) and gas chromatography-immersion mass spectrometry (GC-IMS). Significant differences in the volatile compound profiles of different samples were detected using both GC-IMS, an electronic nose and GC-MS analysis. Among them, compounds such as (E, E)-2,4-decadienal, (E)-2-heptenal, and octanal showed a gradual increase in concentration throughout the roasting process. This increase was likely attributed to the oxidation of oleic and linoleic acids. Additionally, the levels of glucose, ribose, and free amino acids gradually decreased, as these compounds were consumed during the Maillard reaction, which caused the formation of volatile compounds like 2,5-dimethylpyrazine, methylpyrazine, and 3-ethyl-2,5-dimethylpyrazine. This study provided valuable insights into the use of air fryers as a novel approach for enhancing the flavor of meat products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2025.116404DOI Listing

Publication Analysis

Top Keywords

volatile compounds
12
formation volatile
8
compounds mutton
8
air fryer
8
compounds
5
mutton air
4
fryer roasted
4
roasted mutton
4
mutton gc-ms
4
gc-ms gc-ims
4

Similar Publications

Quantification of breath metabolites in labouring versus non-labouring patients: a feasibility study.

Br J Anaesth

September 2025

Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA. Electronic address:

clinicaltrials.gov NCT04564196.

View Article and Find Full Text PDF

Research on worker exposure to volatile organic compounds (VOCs) during asphalt paving operations remains significantly limited, and regulatory frameworks governing such exposures are also insufficient. Previous studies have primarily focused on a limited number of major VOCs. However, this study employs high-resolution, high-performance Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) to comprehensively evaluate exposure levels to 25 different VOCs.

View Article and Find Full Text PDF

The microbiome and volatile organic compounds reflecting the state of decomposition in an indoor environment.

Sci Justice

September 2025

Department of Chemistry, Eberly College of Science, The Pennsylvania State University, University Park, PA, United States. Electronic address:

Given that a variety of factors can affect the decomposition process, it can be difficult to determine the post-mortem interval (PMI). The process is highly dependent on microbial activity, and volatile organic compounds (VOCs) are a by-product of this activity. Given both have been proposed to assist in PMI determination, a deeper understanding of this relationship is needed.

View Article and Find Full Text PDF

Beneficial soil microbes as drivers of plant-insect interactions: A Perspective.

Curr Opin Insect Sci

September 2025

Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA. Electronic address:

The association of plants with beneficial soil microbes, including arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR), can enhance plant growth and nutrient uptake while modifying plant traits including growth rate, architecture, nutritional quality, secondary metabolites, phytohormones and volatile organic compounds (VOCs), necessary for interactions with insect pests and their natural enemies. Microbe-induced effects on insect herbivores and their natural enemies can be positive, neutral, or negative and are context dependent, creating the need for continued synthesis of published research to identify emerging patterns, recognize limitations, and guide future research. This perspective highlights three key pathways through which beneficial soil microbes drive interactions among agricultural plants, insect pests, and their natural enemies through the lens of applied research: (1) alterations in plant growth rate, architecture, and nutritional quality; (2) modifications of plant secondary metabolites and phytohormones; and (3) modifications in the emissions of volatile organic compounds.

View Article and Find Full Text PDF

Inhibition study of model compounds from sludge-derived hydrothermal liquefaction aqueous product on anaerobic digestion.

J Hazard Mater

September 2025

UBC Bioreactor Technology Group, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada; ICREA - Catalan Institution for Research and Advanced Studies, Pg. Lluís Companys 23, Barcelona, Spain; GEMMA - Group of Environmental Engineering and Microbiology, Dep

This study systematically evaluated the inhibitory effects of model compounds from sludge-derived hydrothermal liquefaction aqueous phase (HTLaq) on anaerobic digestion (AD) at both mesophilic and thermophilic temperatures using a total of 1008 anaerobic toxicity assays (ATA). Twenty representative compounds of suspected inhibitors, including nitrogen-containing heterocyclics like pyridines, pyrrolidinones, and pyrazines, as well as phenols and ketones, were tested at varying dosages (25, 50, 100, 200, 400, and 800 mg/L) to assess their impact on volatile fatty acids (VFA) generation and consumption, methane production, substrate utilization, and inhibitory compound degradation. Results demonstrated that thermophilic AD is generally more susceptible to inhibition than mesophilic AD, both in terms of acute and chronic toxicity.

View Article and Find Full Text PDF