Development and validation of a blood biomarker-based model for differentiating stroke etiology in acute large vessel occlusion.

Front Neurol

Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, National Advanced Center for Stroke, Xiamen Key Subspecialty of Neurointerventional Radiology, Xiamen University, Xiamen, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Early differentiation of stroke etiology in acute large vessel occlusion stroke (LVOS) is crucial for optimizing endovascular treatment strategies. This study aimed to develop and validate a prediction model for pre-procedural etiological differentiation based on admission laboratory parameters.

Methods: We conducted a retrospective cohort study at a comprehensive stroke center, enrolling consecutive patients with acute LVOS who underwent endovascular treatment between January 2018 and October 2024. The study cohort ( = 415) was split into training ( = 291) and validation ( = 124) sets using a 7:3 ratio. We applied machine learning techniques-the Boruta algorithm followed by least absolute shrinkage and selection operator regression-for variable selection. The final predictive model was constructed using multivariable logistic regression. Model performance was evaluated through the area under the receiver operating characteristic curve (AUC), calibration plots, and decision curve analysis. We then developed a web-based calculator to facilitate clinical implementation.

Results: Of 415 enrolled patients, 199 (48.0%) had cardioembolism (CE). The final model incorporated six independent predictors: age [adjusted odds ratio (aOR) 1.03], male sex (aOR 0.35), white blood cell count (aOR 0.86), platelet-large cell ratio (aOR 1.06), aspartate aminotransferase (aOR 1.02), and non-high-density lipoprotein cholesterol (aOR 0.75). The model demonstrated good discriminatory ability in both the training set (AUC = 0.802) and the validation set (AUC = 0.784). Decision curve analysis demonstrated consistent clinical benefit across threshold probabilities of 20%-75%.

Conclusion: We developed and internally validated a practical model using routine admission laboratory parameters to differentiate between CE and large artery atherosclerosis in acute LVOS. This readily implementable tool could aid in preoperative decision-making for endovascular intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061931PMC
http://dx.doi.org/10.3389/fneur.2025.1567348DOI Listing

Publication Analysis

Top Keywords

stroke etiology
8
etiology acute
8
acute large
8
large vessel
8
vessel occlusion
8
endovascular treatment
8
admission laboratory
8
acute lvos
8
decision curve
8
curve analysis
8

Similar Publications

Recent Advances in Gene Therapy for Hemophilia.

Clin Appl Thromb Hemost

September 2025

Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.

Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.

View Article and Find Full Text PDF

Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.

View Article and Find Full Text PDF

Hypertrophic Cardiomyopathy: Mechanisms of Pathogenicity.

Biomed Environ Sci

August 2025

Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Henan Provincial People's Hospital Heart Center, Zhengzhou 451464, Henan, China.

Hypertrophic cardiomyopathy (HCM) is a major contributor to cardiovascular diseases (CVD), the leading cause of death globally. HCM can precipitate heart failure (HF) by causing the cardiac tissue to weaken and stretch, thereby impairing its pumping efficiency. Moreover, HCM increases the risk of atrial fibrillation, which in turn elevates the likelihood of thrombus formation and stroke.

View Article and Find Full Text PDF

Objective: To investigate the association between long-term glycemic control and cerebral infarction risk in patients with diabetes through a large-scale cohort study.

Methods: This prospective, community-based cohort study included 12,054 patients with diabetes. From 2006 to 2012, 38,272 fasting blood glucose (FBG) measurements were obtained from these participants.

View Article and Find Full Text PDF

Background Hyperuricemia (HUA) frequently coexists with coronary artery disease (CAD) and is linked to adverse cardiovascular outcomes. The long-term impact of urate-lowering therapy (ULT) on clinical outcomes, including all-cause mortality and major adverse cardiovascular events (MACEs), in CAD patients after percutaneous coronary intervention (PCI) has not been determined. That was the aim of this study.

View Article and Find Full Text PDF