98%
921
2 minutes
20
In order to clarify the effects of drought stress training on the quality and drought resistance of Codonopsis pilosula, this study used PEG to simulate drought stress and employed potting with water control for the drought stress training of C. pilosula plants. The polysaccharide content, secondary metabolites, antioxidant system, and photosynthetic pigment system of C. pilosula after drought stress training were analyzed. The results showed that the content of fructans in the root of C. pilosula increased after two rounds of drought stress treatment, and it was significantly higher than that of the control group. The accumulation of fructans in the root of C. pilosula showed an upward trend during the rehydration treatment. The content of lobetyolin and tangshenoside Ⅰ increased after drought stress treatment compared with that of the control group. The rehydration treatment caused first increasing and then decreasing in the content of lobetyolin, while it had no significant effect on the tangshenoside Ⅰcontent. The content of photosynthetic pigments decreased after drought stress treatment, and it gradually increased during the first round of rehydration and the second round of rehydration. Moreover, the increase was faster in the second round of rehydration than in the first round of rehydration. The content of the peroxidation product malondialdehyde(MDA) and the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) increased after drought stress treatment compared with those of the control group, and they showed a tendency of decreasing during rehydration. Moreover, the decrease was faster in the second round of rehydration than in the first round of rehydration. When the plants of C. pilosula after drought stress training were again subjected to severe drought stress, the wilting rate decreased significantly, and the biomass increases significantly. This study showed that the drought stress training could promote the accumulation of polysaccharides and secondary metabolites in the root of C. pilosula. When encountering drought stress again, C. pilosula plants could quickly regulate the antioxidant system and delay the decomposition of chlorophyll to respond to drought stress. The findings provide a theoretical basis for the ecological cultivation of C. pilosula in arid and semi-arid areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20241114.101 | DOI Listing |
Physiol Plant
September 2025
Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary.
Horticultural crops are increasingly exposed to simultaneous abiotic stresses such as drought, salinity, and temperature extremes, which often exacerbate each other's effects, leading to severe yield and quality losses. Addressing these multifaceted challenges necessitates the development and application of integrated and innovative strategies. This review highlights recent advancements in methodologies to enhance the resilience of horticultural crops against combined abiotic stresses.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India.
Nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of salicylic acid (SA)- facilitated plant hormone signaling and plays a crucial role in plant defense through the activation of systemic acquired resistance (SAR). Although like genes are associated with stress responses in a variety of plant species, no thorough genome-wide investigation of these genes has been undertaken in pearl millet (). This study discovered seven -like genes on four pearl millet chromosomes (Chr1, Chr2, Chr4, and Chr6), which exhibit close affinity to NPRs from other plants and have common gene structures, conserved motifs, and domains.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary. Electronic address:
A wild relative of wheat is goatgrass (Aegilops biuncialis Vis., Ae.b.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, H.P., 173234, India. Electronic address:
Abiotic challenges have a major impact on plant growth and development. Recent research has highlighted the role of long non-coding RNAs in response to these environmental stressors. Long non-coding RNAs are transcripts that are usually longer than 200 nucleotides with no potential for coding proteins.
View Article and Find Full Text PDFJ Plant Physiol
September 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China. Electronic address:
RAV transcription factors play roles in a variety of diverse biological processes. However, their role in rice's response to drought and blast stress remains largely unexplored. In this study, we performed a genome-wide characterization and identification of rice RAV transcription factor family genes.
View Article and Find Full Text PDF