Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MicroRNA-mediated post-transcriptional regulation of lung alveolar type 2 (AT2) and AT1 cell differentiation remains understudied. Here, we demonstrate that the let-7 miRNA family plays a homeostatic role in AT2 quiescence by preventing the uncontrolled accumulation of AT2 transitional cells and promoting AT1 differentiation. Using mouse and organoid models, we show that genetic ablation of let-7a1/let-7f1/let-7d cluster (let-7afd) in AT2 cells prevents AT1 differentiation and leads to KRT8 transitional cell accumulation in progressive pulmonary fibrosis. Integration of AGO2-eCLIP with RNA-sequencing identified direct let-7 targets within an oncogene feed-forward regulatory network, including BACH1/EZH2/MYC, which drives an aberrant fibrotic cascade. Additional CUT&RUN-sequencing analyses revealed that let-7afd loss disrupts histone acetylation and methylation, driving epigenetic reprogramming and altered gene transcription in profibrotic AT2 cells. This study identifies let-7 as a central hub linking unchecked oncogenic signaling to impaired AT2 cell plasticity and fibrogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065893PMC
http://dx.doi.org/10.1038/s41467-025-59641-1DOI Listing

Publication Analysis

Top Keywords

at2 cells
12
pulmonary fibrosis
8
at1 differentiation
8
at2
7
let-7
4
let-7 restrains
4
restrains epigenetic
4
epigenetic circuit
4
circuit at2
4
cells
4

Similar Publications

The ATP-binding cassette subfamily A member 3 (ABCA3) protein on the limiting membrane of lamellar bodies in alveolar type 2 (AT2) cells transports phospholipids required for pulmonary surfactant assembly. ABCA3 deficiency results from biallelic pathogenic variants in and causes progressive neonatal respiratory failure or childhood interstitial lung disease (chILD). Supportive/compassionate care or lung transplantation are the only current definitive treatments for ABCA3 deficiency and progressive respiratory failure.

View Article and Find Full Text PDF

Anti-Triggering Receptor Expressed on Myeloid Cells 2-Conjugated Nanovesicles Loaded Vadimezan Reprogram Tumor-Associated Macrophages to Combat Recurrent Lung Cancer.

ACS Nano

August 2025

Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, P. R. China.

Postoperative lung recurrent cancer exhibited characteristics of an immunosuppressive tumor microenvironment (TME) and low immunogenicity, hindering the therapeutic efficacy of monotherapy, which requires a combination of several treatment modules. Strategies that activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and repolarize tumor-associated macrophages (TAMs) toward the antitumoral M1-like phenotype to reverse the TME are rarely reported. The triggering receptor expressed on myeloid cells 2 (TREM2) is a promising therapeutic target, owing to its critical role in enhancing tumor immunogenicity within the TME.

View Article and Find Full Text PDF

Polyethylene terephthalate microplastics (PET-MPs) are persistent in the environment and have become an emerging health concern. PET-MPs play a role in lung pathologies; however, little is known about their role in idiopathic pulmonary fibrosis (IPF). Our research aimed to determine the role of PET-MPs in exacerbating IPF by combining improved detection and toxicology.

View Article and Find Full Text PDF

Seasonal human coronaviruses (sHCoVs) cause 15%-30% of common colds. The reference strains used for research were isolated decades ago and have been passaged extensively, but contemporary sHCoVs have been challenging to study as they are notoriously difficult to grow in standard immortalized cell lines. Here, we addressed these issues by utilizing primary human nasal epithelial cells (HNECs) and immortalized human bronchial epithelial cells (BCi) differentiated at an air-liquid interface, as well as human embryonic stem cell-derived alveolar type II (AT2) cells to recover contemporary sHCoVs from human nasopharyngeal specimens.

View Article and Find Full Text PDF

Elucidating cellular origins and TME dynamic evolution in NSCLC through multi-omics technologies.

Biochim Biophys Acta Rev Cancer

August 2025

Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, Sichuan Provincial Engineering Laboratory of Precision Medicine, Precision Medicine Key

Non-small cell lung cancer (NSCLC) is a leading cause of cancer mortality. Despite progress in targeted therapies and immunotherapy, resistance driven by tumor heterogeneity and dynamic tumor microenvironment (TME) remodeling persists. Multi-omics (single-cell/spatial transcriptomics) reveals lung adenocarcinoma (LUAD) origins in alveolar type 2 (AT2) cells and lineage plasticity via SOX2/WNT/YAP pathways driving aggressive subtypes.

View Article and Find Full Text PDF