A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Photothermal effect-assisted reduced graphene oxide biosensor for amplification-free detection of miRNA. | LitMetric

Photothermal effect-assisted reduced graphene oxide biosensor for amplification-free detection of miRNA.

Biosens Bioelectron

Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It remains a challenge to achieve high-sensitivity detection of tumor marker miRNA using optical refractive index (RI) sensors without nucleic acid amplification. This study proposes the photothermal effect-assisted reduced graphene oxide (rGO) biosensor that combines the photothermal effect of rGO with the rGO-based RI sensor for high-sensitivity detection of tumor marker miRNA-21. The rGO was functionalized with DNA probes capable of specifically hybridizing with the target miRNA-21. Quantitative detection of miRNA-21 was achieved by monitoring the RI change caused by the competitive hybridization of single-strand DNA (ssDNA)-functionalized AuNPs and target miRNA-21 with the DNA probes on the rGO surface. The presence of AuNPs disturbed the evanescent field on the rGO surface, thus achieving signal amplification. Furthermore, the localized photothermal effect heat induced by the interaction between rGO and pump light can effectively improve the hybridization kinetics of nucleic acid chains and achieve further signal amplification. The proposed biosensor had a high sensitivity toward the target miRNA-21, achieving a low detection limit of 4.05 fM without nucleic acid amplification. Its high specificity allowed for the recognition of single-base mismatches in miRNA-21. In addition, accurate quantification of low abundance miRNA-21 spiked into human urine samples was also successfully achieved. The photothermal effect-assisted rGO biosensor offers a promising approach for high-sensitivity detection of tumor marker miRNA without need for nucleic acid amplification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2025.117532DOI Listing

Publication Analysis

Top Keywords

nucleic acid
16
photothermal effect-assisted
12
high-sensitivity detection
12
detection tumor
12
tumor marker
12
acid amplification
12
target mirna-21
12
effect-assisted reduced
8
reduced graphene
8
graphene oxide
8

Similar Publications