Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biophysical signals such as motion and optically acquired hemodynamics represent foundational sensing modalities for wearables. Expansion of this toolset is vital for the progression of digital medicine. Current efforts utilize biofluids such as sweat and interstitial fluid with primarily adhesively mounted sensors that are fundamentally limited by epidermal turnover. A class of potential biomarkers that is largely unexplored are gaseous emissions from the body. In this work, we introduce an approach to capture emission of gas from the skin with a leaky cavity designed to allow for diffusion-based ambient gas exchange with the environment. This approach, coupled with differential measurement of ambient and in-cavity gas concentrations, allows for the real-time analysis of sweat rate, VOCs, and CO while performing everyday tasks. The resulting biosignals are recorded with temporal resolutions that exceed current methodology, providing unparalleled insight into physiological processes without requiring sensor replacement over weeks at a time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064829PMC
http://dx.doi.org/10.1038/s41467-025-59629-xDOI Listing

Publication Analysis

Top Keywords

wearable continuous
4
continuous diffusion-based
4
diffusion-based skin
4
gas
4
skin gas
4
gas analysis
4
analysis biophysical
4
biophysical signals
4
signals motion
4
motion optically
4

Similar Publications

Background: Falls are a major cause of injury and death among the elderly, highlighting the need for effective and real-time detection systems. Embedded Internet of Health Things (IoHT) technologies integrating sensors, microcontrollers, and communication modules offer continuous monitoring and rapid response. However, the research landscape remains fragmented, and no comprehensive bibliometric review has been conducted.

View Article and Find Full Text PDF

To explore the feasibility and accuracy of predicting respiratory tract infections (RTIs) using physiological data obtained from consumer-grade smartwatches. The study used smartwatches and paired mobile applications to continuously collect physiological parameters while participants slept. A personalized baseline model was established using multi-day data, followed by the construction of RTIs risk prediction algorithm based on deviations from physiological parameter trends.

View Article and Find Full Text PDF

Wearable bioelectronics for skin cancer management.

Biomaterials

August 2025

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA. Electronic address:

Wearable bioelectronics have transformed modern biomedical applications by enabling seamless integration with biological tissues, providing continuous, comprehensive, and personalized healthcare. Skin cancer, particularly melanoma, poses a significant clinical challenge due to its high metastatic potential and associated mortality. Traditional diagnostic approaches face limitations in accuracy, accessibility, and reproducibility, while existing treatments are often constrained by systemic toxicity and therapeutic resistance.

View Article and Find Full Text PDF

Wearable technologies that analyse non-conventional biological matrices, such as interstitial fluid, sweat, tears or breath, have the potential to provide longitudinal biomarker data with minimal invasiveness. These data could provide insights into physiological and behavioural patterns, in particular outside medical care facilities. Despite the success of continuous glucose monitoring, the adoption of wearable sensors for managing endocrine and metabolic diseases remains limited.

View Article and Find Full Text PDF

Characterization of skeletal muscle contraction using a flexible and wearable ultrasonic sensor.

Prog Mol Biol Transl Sci

September 2025

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada. Electronic address:

Monitoring skeletal muscle contraction provides valuable information about the muscle mechanical properties, which can be helpful in various biomedical applications. This chapter presents a single-element flexible and wearable ultrasonic sensor (WUS) developed by our research group and its application for continuously monitoring and characterizing skeletal muscle contraction. The WUS is made from a 110-µm thick polyvinylidene fluoride piezoelectric polymer film.

View Article and Find Full Text PDF