98%
921
2 minutes
20
Purpose: To explore the role of long non-coding RNAs (lncRNAs) and N6-methyladenosine (m6A) in posterior capsule opacification (PCO) and their underlying mechanisms.
Methods: The localization of lncRNAs and proteins was analyzed using fluorescence in situ hybridization and immunofluorescence staining. RNA m6A quantification, RNA immunoprecipitation, co-immunoprecipitation, MeRIP-seq, MeRIP-qPCR, western blotting, wound healing, and Transwell assays were applied to elucidate the underlying mechanisms.
Results: The levels of lncRNA HOX transcript antisense intergenic RNA (HOTAIR) and m6A methylation increased significantly during epithelial-mesenchymal transition (EMT) in lens epithelial cells (LECs). HOTAIR promoted EMT and m6A methyltransferase activity but had no effect on methyltransferase activity and was not modified by m6A. Nevertheless, HOTAIR interacted with WT1-associated protein (WTAP), a key m6A writer protein, facilitating WTAP-mediated recruitment of METTL3-METTL14 heterodimers and enhancing m6A modification. The HOTAIR/WTAP complex elevated m6A levels, thrombospondin 1 (THBS1) expression, and EMT in LECs.
Conclusions: LncRNA HOTAIR enhances the assembly of the WTAP/METTL3/METTL14 complex and promotes EMT in LECs by upregulating m6A modification and THBS1 expression. Targeting the HOTAIR/WTAP/THBS1 pathway may prevent or treat PCO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12068528 | PMC |
http://dx.doi.org/10.1167/iovs.66.5.20 | DOI Listing |
Nat Struct Mol Biol
September 2025
Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK.
X-chromosome inactivation (XCI) in mammals is orchestrated by the noncoding RNA X-inactive-specific transcript (Xist) that, together with specific interacting proteins, functions in cis to silence an entire X chromosome. Defined sites on Xist RNA carry the N-methyladenosine (mA) modification and perturbation of the mA writer complex has been found to abrogate Xist-mediated gene silencing. However, the relative contribution of mA and its mechanism of action remain unclear.
View Article and Find Full Text PDFJ Gastroenterol
September 2025
Department of General Surgery (Hepatopancreatobiliary Surgery), Department of Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.
Background And Aims: Inflammatory cell infiltration in the liver is a hallmark of metabolic dysfunction-associated fatty liver disease (MAFLD). However, the pathological events that trigger the infiltration of inflammatory cells to mediate MAFLD pathogenesis remains poorly understood. This study aims to investigate the function and mechanism of Hic-5 on hepatic inflammation of MAFLD.
View Article and Find Full Text PDFKaohsiung J Med Sci
September 2025
Department of Medical Oncology, Haikou People's Hospital, Haikou, Hainan, People's Republic of China.
Inhibition of cuproptosis contributes to the development of non-small cell lung cancer (NSCLC). The expression of RNA-binding motif protein 15 (RBM15) is upregulated in NSCLC. Nonetheless, its relationship with cuproptosis remains unclear.
View Article and Find Full Text PDFGen Physiol Biophys
September 2025
The Second Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.
View Article and Find Full Text PDFInt J Cancer
September 2025
Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
Bladder cancer (BlCa) exhibits a highly heterogeneous molecular landscape and treatment response, underlining the pressing need for personalized prognosis. N6-methyladenosine (m6A) constitutes the most abundant RNA modification, modulates RNA biology/metabolism, and maintains cellular homeostasis, with its dysregulation involved in cancer initiation and progression. Herein, we evaluated the clinical value of METTL3 m6A methyltransferase, the main catalytic component of m6A methylation machinery, in improving BlCa patients' risk stratification and prognosis.
View Article and Find Full Text PDF