98%
921
2 minutes
20
Creatine is a critical metabolite used to buffer cellular energy demands in highly energetic tissues such as the brain and muscle. Genetic defects in endogenous creatine synthesis or transport across cellular membranes lead to a common set of phenotypes referred to as Cerebral Creatine Deficiency Syndrome (CCDS). The most common form of CCDS is Creatine Transporter 1 (CT1) Deficiency (CTD). It accounts for ~ 70% of cases and results from loss-of-function mutations in the X-linked gene SLC6A8. Affected individuals suffer from intellectual disability, autistic-like behaviors, and epilepsy. There are currently no effective therapies for this disorder, but gene therapy has emerged as a potential approach. The two enzymes which comprise the endogenous creatine synthetic pathway (AGAT and GAMT) are selectively expressed by specific cell types throughout the body. However, after synthesized, creatine uptake relies on the protein product of SLC6A8, CT1, to transport creatine into target cell types. We hypothesized that gene delivery of GATM (encoding AGAT) and GAMT into end-user cell types would bypass the need for CT1, allowing for intracellular synthesis of creatine. We tested this strategy in two human cell types: HEK293T cells and primary fibroblasts. Co-delivery of GATM and GAMT increased internal creatine concentrations by 7.6-fold in HEK293T cells and 12.3-fold in healthy control fibroblasts. We then employed this approach to primary fibroblasts from patients with CTD. This resulted in an up to 11.6-fold increase in intracellular creatine concentrations, far exceeding the intracellular concentration of creatine in healthy control fibroblasts. Importantly, overexpression of AGAT and GAMT resulted in proper targeting of these enzymes to their natural cellular compartment and did not impair the growth of patient fibroblasts. These findings establish gene therapy with GATM and GAMT as a potential strategy for patients with CTD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061113 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0319350 | PLOS |
Microb Biotechnol
May 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
Creatine (CR) is a naturally occurring amino acid derivative that plays a key role in cellular energy homeostasis, which has wide-ranging applications in food and medicine. Currently, the lack of green and sustainable CR biomanufacturing methods has led to reliance on chemical methods for industrial CR synthesis. This study presents a biological approach to synthesising CR using whole-cell catalysis by engineered Escherichia coli.
View Article and Find Full Text PDFFront Neurosci
April 2025
Service of Clinical Chemistry, University of Lausanne and Lausanne University Hospital of Lausanne, Lausanne, Switzerland.
Creatine (Cr) is an organic acid essential for recycling ATP, important in tissues with high energy demand such as muscle or brain. Cr is synthesized in a 2-step pathway by the enzymes AGAT and GAMT, and transported by SLC6A8 (also called CrT). Cerebral Cr deficiency syndromes (CCDS), due to AGAT, GAMT or CrT deficiencies, are metabolic diseases characterized by brain Cr deficiency, causing a range of clinical features such as severe neurodevelopmental delays and intellectual disability, behavioral disturbances, motor dysfunction and epilepsy.
View Article and Find Full Text PDFPLoS One
May 2025
Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America.
Creatine is a critical metabolite used to buffer cellular energy demands in highly energetic tissues such as the brain and muscle. Genetic defects in endogenous creatine synthesis or transport across cellular membranes lead to a common set of phenotypes referred to as Cerebral Creatine Deficiency Syndrome (CCDS). The most common form of CCDS is Creatine Transporter 1 (CT1) Deficiency (CTD).
View Article and Find Full Text PDFFront Neurosci
February 2025
Association for Creatine Deficiencies, Carlsbad, CA, United States.
The current era of drug development has evolved significantly. Patient advocacy organizations are moving beyond simply supporting community members and are taking the reins to improve the speed of diagnoses, initiate therapeutic discoveries, and lay the groundwork to ensure successful clinical trials. The Association for Creatine Deficiencies (ACD) is an international parent-led patient advocacy organization focused on the three ultra-rare neurodevelopmental monogenic disorders resulting in Cerebral Creatine Deficiency Syndromes (CCDS).
View Article and Find Full Text PDF