Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nucleophilic aromatic substitution (SAr) is a broadly used method for generating structural complexity in pharmaceuticals. Although SAr reactions were long assumed to be stepwise, recent kinetic isotope effect (KIE) studies have shown that many SAr reactions are actually concerted. However, it remains unclear how variations in substrate structure affect whether a reaction is stepwise, concerted, or borderline. In this paper, we show that reactions between indole and moderately electron-deficient aryl fluorides proceed by a borderline mechanism and are subject to general base catalysis. These findings are consistent with density functional theory (DFT) calculations, which also predict that borderline mechanisms are operative for a broad range of industrially relevant SAr reactions involving azole nucleophiles. The predicted transition structures vary smoothly independent of the mechanism, suggesting that these SAr reactions exist on a mechanistic continuum. The findings of widespread general base catalysis and a mechanistic continuum will guide future efforts to devise general models of SAr reactivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053731PMC
http://dx.doi.org/10.1039/d5sc01856kDOI Listing

Publication Analysis

Top Keywords

sar reactions
16
mechanistic continuum
12
nucleophilic aromatic
8
aromatic substitution
8
azole nucleophiles
8
general base
8
base catalysis
8
reactions
6
sar
6
continuum nucleophilic
4

Similar Publications

Application of High-Entropy Materials in Promoting Electrocatalytic Nitrogen Cycle.

Small Methods

September 2025

The Research Institute for Advanced Manufacturing, and Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China.

Nitrogen cycle is a fundamental biogeochemical loop existed for millions of years, which involves the transformation of nitrogen-containing chemicals in the environment. However, human activities, especially those since the Industrial Revolution, have significantly disrupted this balance, leading to environmental and energy challenges. Electrocatalysis nitrogen cycle (ENC) offers a promising alternative for the sustainable transformation of nitrogen compounds en route toward rebalancing, with reactions such as the electrocatalytic nitrogen reduction reaction (eNRR) and nitrate/nitrite reduction reaction (eNORR/eNORR) emerging as sustainable alternatives to the traditional Haber-Bosch process.

View Article and Find Full Text PDF

Confronting the dual challenges of carbon neutrality and sustainable energy, photocatalytic CO reduction requires precise control over product selectivity. This study demonstrates that surface hydroxyl (-OH) density serves as a molecular switch for reaction pathways in graphene oxide/cobalt tetraphenylporphyrin (GO/CoTPP) hybrids. By tuning the reduction degree of GO supports via gradient hydrazine hydrate treatment (0-85%), we constructed catalysts with controlled -OH concentrations.

View Article and Find Full Text PDF

Screening for high-risk human papillomavirus (hrHPV) infection is essential for cervical cancer prevention. However, developing a simple, portable, and low-cost hrHPV genotyping method remains challenging, particularly in resource-limited settings. Herein, we present an innovative amplification-free, point-of-care hrHPV genotyping platform integrating CRISPR/Cas12a with alkaline phosphatase (ALP)-mediated surface plasmon effect.

View Article and Find Full Text PDF

Here, we report a multifunctional hybrid membrane-coated nanomotor for cancer chemoimmunotherapy, which consists of mesoporous silica-coated iron oxide nanoparticles (MF) as a drug carrier, loaded with doxorubicin (DOX), l-arginine (l-arg), and glucose oxidase (GOx), and camouflaged with a hybrid of red blood cell membranes (mRBC) and cancer cell membranes (CCM). RM-GDL-MF has a cascade of catalytic reactions, where glucose is catalyzed by GOx to produce HO, and l-arg is oxidized by the produced HO to release nitric oxide (NO), leading to self-propelled motion in order to promote the penetration of the extracellular matrix (ECM) in the tumor. The hybrid membrane provides not only stealth properties from mRBC to evade immune clearance but also tumor-orientation ability to target the tumor from the CCM.

View Article and Find Full Text PDF

2-Chlorobutane (2CB) and 2-aminobutane (2AB) are chiral compounds, which play a crucial role in biological complexity. These compounds can be released into the air through natural and man-made processes. Their emission into the atmosphere may influence the air quality and climate significantly.

View Article and Find Full Text PDF