BmHR3 Is Essential for Silk Gland Development and Silk Protein Synthesis in Silkworms ().

Insects

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The steroid hormone 20-hydroxyecdysone (20E), which is known to regulate insect molting and metamorphosis, is crucial for the normal development of silk glands (SGs) in the silkworm . However, how the 20E signaling pathway and its core members function in the SG remains largely unclear. Here, we report that the orphan nuclear receptor BmHR3, a 20E-response factor, plays an essential role in regulating SG development and silk protein synthesis. First, we showed that tissue-specific overexpression and knockout result in severe developmental defects in posterior silk glands (PSGs). Second, we revealed that dysfunction in PSGs dramatically represses the transcription of silk fibroin protein-coding genes, thereby inhibiting fibroin protein synthesis. Finally, we confirmed that BmHR3 can regulate fibroin protein-coding gene expression via direct and indirect mechanisms. This study elucidates the vital function of BmHR3 in SG and provides valuable information for thoroughly understanding the regulatory roles of 20E signaling in specialized insect organs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028065PMC
http://dx.doi.org/10.3390/insects16040369DOI Listing

Publication Analysis

Top Keywords

development silk
12
protein synthesis
12
silk protein
8
silk glands
8
20e signaling
8
fibroin protein-coding
8
silk
6
bmhr3
4
bmhr3 essential
4
essential silk
4

Similar Publications

Recombinant spider silk functionalized with a CD40 agonist shows improved capability to activate human B cells in vitro - A novel module for cancer immunotherapy.

Int J Biol Macromol

September 2025

Department of Protein Science, Division of Protein Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden. Electronic address:

This paper presents the generation and evaluation of a novel potential drug delivery platform for biologics, based on recombinant spider silk. Targeting CD40 for activation of antigen presenting cells, in order to overcome tumor induced T cell tolerance, have shown promising results in cell and animal models. However, further trials have gained limited results due to severe side reactions.

View Article and Find Full Text PDF

Directional Biomimetic Scaffold-Mediated Cell Migration and Pathological Microenvironment Regulation Accelerate Diabetic Bone Defect Repair.

ACS Nano

September 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev

Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.

View Article and Find Full Text PDF

In situ articular cartilage (AC) regeneration is a meticulously coordinated process. Microfracture has been the most extensive clinical approach in AC repair, but it faces challenges such as matrix degradation, generation, and remodeling within a local inflammatory microenvironment. So far, it remains a challenge to establish a multistage regulatory framework for coordinating these cellular events, particularly the immune response and chondrocyte proliferation in microfracture-mediated AC repair microenvironments, which is crucial for promoting AC regeneration quality.

View Article and Find Full Text PDF

Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults.

View Article and Find Full Text PDF

Famotidine (FMD) is an H₂-receptor antagonist with limited oral bioavailability and a short plasma half-life (2.5-4 h). Silk fibroin-chitosan nanoparticles (FBN-CS-NPs) represent a novel nanocarrier approach for treating peptic ulcers, combining biocompatibility, mucoadhesiveness, and pH-sensitive release.

View Article and Find Full Text PDF