98%
921
2 minutes
20
The steroid hormone 20-hydroxyecdysone (20E), which is known to regulate insect molting and metamorphosis, is crucial for the normal development of silk glands (SGs) in the silkworm . However, how the 20E signaling pathway and its core members function in the SG remains largely unclear. Here, we report that the orphan nuclear receptor BmHR3, a 20E-response factor, plays an essential role in regulating SG development and silk protein synthesis. First, we showed that tissue-specific overexpression and knockout result in severe developmental defects in posterior silk glands (PSGs). Second, we revealed that dysfunction in PSGs dramatically represses the transcription of silk fibroin protein-coding genes, thereby inhibiting fibroin protein synthesis. Finally, we confirmed that BmHR3 can regulate fibroin protein-coding gene expression via direct and indirect mechanisms. This study elucidates the vital function of BmHR3 in SG and provides valuable information for thoroughly understanding the regulatory roles of 20E signaling in specialized insect organs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028065 | PMC |
http://dx.doi.org/10.3390/insects16040369 | DOI Listing |
Int J Biol Macromol
September 2025
Department of Protein Science, Division of Protein Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden. Electronic address:
This paper presents the generation and evaluation of a novel potential drug delivery platform for biologics, based on recombinant spider silk. Targeting CD40 for activation of antigen presenting cells, in order to overcome tumor induced T cell tolerance, have shown promising results in cell and animal models. However, further trials have gained limited results due to severe side reactions.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev
Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.
View Article and Find Full Text PDFACS Nano
September 2025
School of Medicine, Nankai University, Tianjin 300071, China.
In situ articular cartilage (AC) regeneration is a meticulously coordinated process. Microfracture has been the most extensive clinical approach in AC repair, but it faces challenges such as matrix degradation, generation, and remodeling within a local inflammatory microenvironment. So far, it remains a challenge to establish a multistage regulatory framework for coordinating these cellular events, particularly the immune response and chondrocyte proliferation in microfracture-mediated AC repair microenvironments, which is crucial for promoting AC regeneration quality.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
Famotidine (FMD) is an H₂-receptor antagonist with limited oral bioavailability and a short plasma half-life (2.5-4 h). Silk fibroin-chitosan nanoparticles (FBN-CS-NPs) represent a novel nanocarrier approach for treating peptic ulcers, combining biocompatibility, mucoadhesiveness, and pH-sensitive release.
View Article and Find Full Text PDF