Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

β-carotene (β-C) is a hydrophobic compound, easily degradable by light and oxygen and with low solubility, limiting its applications. β-cyclodextrin (β-CD) can encapsulate β-C, protecting it from degradation and maintaining its bioactivity. Therefore, this research aimed to characterize and determine the antioxidant and erythroprotective activity of β-C/β-CD inclusion complexes. The co-precipitation technique was used to elaborate β-C/β-CD in a 40:60 ratio, obtaining a high yield (94.10%), an entrapment efficiency of 82.47%, and a loading efficiency of 11.92%. The moisture of β-C/β-CD was 2.93%. β-C release increased over the time of 216 h (80.8%, 92.8%, and 97.4% at 8 °C, 25 °C, and 37 °C, respectively). A UV-visible analysis confirmed the presence of β-carotene in the inclusion complex, indicating successful encapsulation without significant structural changes. According to the adsorption-desorption isotherms, the complexes showed a type II isotherm. The FT-IR and Raman spectroscopy confirmed the formation of the inclusion complex, which interacted by hydrogen bonds, hydrophobic interactions, or van der Waals forces. The DSC showed an endothermic peak at 118 °C in the β-C/β:CD. The TGA revealed reduced water loss in the β-carotene/β-cyclodextrin complex, indicating limited water binding due to encapsulation. The microscopic surface morphologies observed by the SEM of β-C/β-CD were irregular-shaped clumps in the surface with a particle average size of 8.09 µm. The X-ray diffraction showed a crystalline structure of the complex. The zeta potential determination indicated a negative charge (-23 and -32 mV). The ABTS, DPPH, and FRAP demonstrated the antioxidant activity of β-C/β:CD (34.09%, 21.73%, and 8.85. mM ET/g, respectively), similar to pure β-C (34.64%, 22.63%, and 9.12 μM ET/g, respectively). The complexes showed an erythroprotective effect inhibiting hemolysis (64.09%). Therefore, with these characteristics, β-CD is a good encapsulant for β-C, and this complex could be applied in the food and pharmaceutical industries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027985PMC
http://dx.doi.org/10.3390/ijms26083902DOI Listing

Publication Analysis

Top Keywords

antioxidant erythroprotective
8
°c °c
8
inclusion complex
8
complex indicating
8
β-c
5
complex
5
characterization antioxidant
4
erythroprotective effects
4
effects β-carotene
4
β-carotene complexed
4

Similar Publications

In pursuing functional foods that promote health, nanoliposomal carriers have been used to enhance the stability and functionality of dairy products such as yogurt, promising therapeutic benefits. This study aimed to evaluate the impact of fucoxanthin-loaded nanoliposomes in yogurt on its antioxidant, physicochemical, and rheological properties under cold storage (21 days). Fucoxanthin-loaded nanoliposomes were prepared using the ultrasonic film dispersion technique and added at concentrations of 0%, 5%, and 10% in the yogurt (Y-C, Y-FXN-5, Y-FXN-10).

View Article and Find Full Text PDF

The Characterization and Antioxidant and Erythroprotective Effects of β-Carotene Complexed in β-Cyclodextrin.

Int J Mol Sci

April 2025

Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico.

β-carotene (β-C) is a hydrophobic compound, easily degradable by light and oxygen and with low solubility, limiting its applications. β-cyclodextrin (β-CD) can encapsulate β-C, protecting it from degradation and maintaining its bioactivity. Therefore, this research aimed to characterize and determine the antioxidant and erythroprotective activity of β-C/β-CD inclusion complexes.

View Article and Find Full Text PDF

Previous studies detail that different blood groups are associated with incidence of oxidative stress-related diseases such as certain carcinomas. Bioactive compounds represent an alternative for preventing this oxidative stress. The aim of this study was to elucidate the impact of blood groups on the erythroprotective potential of fucoxanthin, β-Carotene, gallic acid, quercetin and ascorbic acid as therapeutic agents against oxidative stress.

View Article and Find Full Text PDF

Erythroprotective Potential of Phycobiliproteins Extracted from .

Metabolites

March 2023

Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Mexico.

There are multiple associations between the different blood groups (ABO and RhD) and the incidence of oxidative stress-related diseases, such as certain carcinomas and COVID-19. Bioactive compounds represent an alternative to its prevention and treatment. Phycobiliproteins (PBP) are bioactive compounds present in the microalga and, despite its antioxidant activity, their inhibitory effect on hemolysis has not been reported.

View Article and Find Full Text PDF

Oxidative stress and multiple erythrocyte abnormalities have been observed in hypertension. We focused on the effects of angiotensin-converting enzyme 2 (ACE2) inhibition by MLN-4760 inhibitor on angiotensin peptides, oxidative stress parameters, and selected erythrocyte quality markers in spontaneously hypertensive rats (SHR). We also investigated the potential effects of polyphenolic antioxidant taxifolin when applied in vivo and in vitro following its incubation with erythrocytes.

View Article and Find Full Text PDF