Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Previous studies detail that different blood groups are associated with incidence of oxidative stress-related diseases such as certain carcinomas. Bioactive compounds represent an alternative for preventing this oxidative stress. The aim of this study was to elucidate the impact of blood groups on the erythroprotective potential of fucoxanthin, β-Carotene, gallic acid, quercetin and ascorbic acid as therapeutic agents against oxidative stress. The impact of ABO blood groups on the erythroprotective potential was evaluated via the antioxidant capacity, blood biocompatibility, blood susceptibility and erythroprotective potential (membrane stabilization, in vitro photostability and antihemolytic activity). All tested antioxidants exhibited a high antioxidant capacity and presented the ability to inhibit ROO•-induced oxidative stress without compromising the cell membrane, providing erythroprotective effects dependent on the blood group, effects that increased in the presence of antigen A. These results are very important, since it has been documented that antigen A is associated with breast and skin cancer. These results revealed a probable relationship between different erythrocyte antigens with erythroprotective potential, highlighting the importance of bio-targeted drugs for groups most susceptible to certain chronic-degenerative pathologies. These compounds could be applied as additive, nutraceutical or encapsulated to improve their bioaccessibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740450PMC
http://dx.doi.org/10.3390/antiox12122092DOI Listing

Publication Analysis

Top Keywords

erythroprotective potential
20
blood groups
16
oxidative stress
16
impact abo
8
potential fucoxanthin
8
fucoxanthin β-carotene
8
β-carotene gallic
8
gallic acid
8
acid quercetin
8
quercetin ascorbic
8

Similar Publications

In pursuing functional foods that promote health, nanoliposomal carriers have been used to enhance the stability and functionality of dairy products such as yogurt, promising therapeutic benefits. This study aimed to evaluate the impact of fucoxanthin-loaded nanoliposomes in yogurt on its antioxidant, physicochemical, and rheological properties under cold storage (21 days). Fucoxanthin-loaded nanoliposomes were prepared using the ultrasonic film dispersion technique and added at concentrations of 0%, 5%, and 10% in the yogurt (Y-C, Y-FXN-5, Y-FXN-10).

View Article and Find Full Text PDF

The Characterization and Antioxidant and Erythroprotective Effects of β-Carotene Complexed in β-Cyclodextrin.

Int J Mol Sci

April 2025

Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico.

β-carotene (β-C) is a hydrophobic compound, easily degradable by light and oxygen and with low solubility, limiting its applications. β-cyclodextrin (β-CD) can encapsulate β-C, protecting it from degradation and maintaining its bioactivity. Therefore, this research aimed to characterize and determine the antioxidant and erythroprotective activity of β-C/β-CD inclusion complexes.

View Article and Find Full Text PDF

Previous studies detail that different blood groups are associated with incidence of oxidative stress-related diseases such as certain carcinomas. Bioactive compounds represent an alternative for preventing this oxidative stress. The aim of this study was to elucidate the impact of blood groups on the erythroprotective potential of fucoxanthin, β-Carotene, gallic acid, quercetin and ascorbic acid as therapeutic agents against oxidative stress.

View Article and Find Full Text PDF

Erythroprotective Potential of Phycobiliproteins Extracted from .

Metabolites

March 2023

Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Mexico.

There are multiple associations between the different blood groups (ABO and RhD) and the incidence of oxidative stress-related diseases, such as certain carcinomas and COVID-19. Bioactive compounds represent an alternative to its prevention and treatment. Phycobiliproteins (PBP) are bioactive compounds present in the microalga and, despite its antioxidant activity, their inhibitory effect on hemolysis has not been reported.

View Article and Find Full Text PDF

Previous studies have reported that different blood groups are associated with the risk of chronic degenerative diseases that mainly involve inflammation and neoplastic processes. We investigate the relationship between blood groups and the erythroprotective effect of extracts from against oxidative damage as a proposal to develop drugs designed for people with a specific blood type related to chronic pathology. The study was carried out through the elucidation of the erythroprotective potential, anti-inflammatory and antiproliferative activity of .

View Article and Find Full Text PDF