Macrophage response to fibrin structure mediated by Tgm2-dependent mitochondrial mechanosensing.

Bioact Mater

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Following an injury at the implantation position, blood-material interactions form a fibrin architecture, which serves as the initial activator of foreign body response (FBR). However, there is limited knowledge regarding how the topography of fibrin architectures regulates macrophage behavior in mitigating FBR. Mechanical cues of the microenvironment have been reported to shape immune cell functions. Here, we investigated macrophage mechanobiology at the organelle level by constructing heterogeneous fibrin networks. Based on findings , we demonstrated that adhesion-mediated differentiation of mitochondrial function modulated macrophage polarization. The finite activation of integrin signaling upregulated transglutaminase 2 (Tgm2) in a trans-manner, augments PGC1α-mediated mitochondrial biogenesis. Our study highlighted the previously overlooked spatial structures of host proteins adsorbed on material surfaces, advocating for a paradigm shift in material design strategies, from focusing solely on physical properties to considering the modification of host proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12051126PMC
http://dx.doi.org/10.1016/j.bioactmat.2025.04.022DOI Listing

Publication Analysis

Top Keywords

host proteins
8
macrophage
4
macrophage response
4
fibrin
4
response fibrin
4
fibrin structure
4
structure mediated
4
mediated tgm2-dependent
4
tgm2-dependent mitochondrial
4
mitochondrial mechanosensing
4

Similar Publications

Schistosome parasites are known to modulate host immune responses, which is achieved in part through the release of excretory/secretory (ES) products, including extracellular vesicles (EVs). During chronic schistosomiasis, increased regulatory responses are found, which include enhanced IL-10 production by B (Breg) cells. ES products from schistosome eggs are able to induce IL-10 production by B cells.

View Article and Find Full Text PDF

Leishmania parasite adeptly evades the host's immune defences by infiltrating macrophages, exploiting apoptotic processes for further dissemination. Among the host's strategies to counter parasitic propagation, the pivotal role of B-cells, specifically B regulatory (Breg) cells, emerges. Recent evidence from in vitro and in vivo studies has thrust Breg cells into the spotlight, attributed to their IL-10 secretion and antigen presentation.

View Article and Find Full Text PDF

In vivo self-assembled siRNAs ameliorate neurological pathology in TDP-43-associated neurodegenerative disease.

Brain

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege

Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.

View Article and Find Full Text PDF

Glycoside hydrolase Ma3360 mediates immune evasion by Metarhizium anisopliae in insects.

Pestic Biochem Physiol

November 2025

National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Entomopathogenic fungi can precisely inhibit the cellular and humoral immune responses of host insects by secreting effector proteins, allowing them to overcome the innate immune barriers of their hosts. Nodule formation is an immune response primarily mediated by insect hemocytes, which can rapidly and efficiently capture invading pathogenic fungi in the hemocoel. However, the molecular mechanisms by which fungi inhibit insect nodule formation through the secretion of effector proteins remain unclear.

View Article and Find Full Text PDF

The pleiotropic odorant binding protein CaspOBP12 involved in perception of Ceutorhynchus asper for plant volatiles and pesticides.

Pestic Biochem Physiol

November 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural

The olfactory system of insects plays a vital role in their survival by enabling them to detect chemical cues and adapt to changing environments. The rape stem weevil, Ceutorhynchus asper, is a significant pest posing a challenge for rapeseed production due to its destructive feeding habit and increasing resistance to insecticides. So far, there's still limited knowledge about structure and function of odorant binding proteins (OBPs) in beetles like C.

View Article and Find Full Text PDF