Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bread wheat (Triticum aestivum L.) is one of the widely consumed staple foods, providing 20% of the total protein and calories in human nutrition. Seeing its importance in the global food supply, the enrichment of functional genomic resources is vital for meeting future demands and ensuring sustainable production. In addition to the presence of functional domains, the presence of microsatellites within transcription factors makes them valuable candidates for enriching functional marker resources. The NAC transcription factor family regulates a variety of physiological processes in cereal crops. Hence, the present study aims to develop and characterize Triticum aestivum NAC MicroSatellites (TaNACMS) to enrich functional marker resources for genetic diversity analysis, marker-assisted selection, and evolutionary studies. In total, 520 SSRs were identified from 451 TaNAC sequences, and a set of 66 TaNACMS was used for cross-transferability in wild/related wheat species. The cross-transferability rate of 90.22% revealed high locus conservation. Further, 16 TaNACMS were utilized for the characterization of genetic diversity in Indian wheat varieties. These TaNACMS produced 40 alleles (2.5 alleles per locus) with an average observed heterozygosity (H), expected heterozygosity (H), and polymorphic information content (PIC) of 0.392, 0.417, and 0.380, respectively. The genetic analysis of wheat genotypes, using principal coordinates analysis (PCoA), neighbor-joining (NJ) clustering, and Bayesian-based STRUCTURE, has revealed three distinct genetic clusters. Two of these clusters consist of Indian wheat varieties, while the third cluster comprises wild/related wheat species. In conclusion, the high rate of transferability of TaNACMS can be effectively utilized for gene flow both within and between species, highlighting evolutionary connections between cultivated wheat and related species. Additionally, these SSRs will aid the marker repository and benefit the wheat improvement programs through marker-assisted selection (MAS).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13353-025-00971-7DOI Listing

Publication Analysis

Top Keywords

triticum aestivum
12
wheat species
12
wheat
9
nac transcription
8
wheat triticum
8
functional marker
8
marker resources
8
genetic diversity
8
marker-assisted selection
8
wild/related wheat
8

Similar Publications

Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.

View Article and Find Full Text PDF

Wheat Maintains Stem Water Potential During Drought Stress Despite Declining Osmotic Potential.

Physiol Plant

September 2025

Faculty of Bioscience Engineering, Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Ghent, Belgium.

Plant water potential is one of the most frequently measured variables of plant water status. Stem water potential, often approximated by wrapping the leaves, is assumed to be more stable and a better measure of drought stress than leaf water potential. In wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Wheat blast caused by the fungus (MoT) pathotype is a catastrophic disease that threatens global food security. Lately, was discovered as a blast resistance gene in wheat genotype S615. However, while has recently been cloned, the precise underlying biochemical and molecular mechanism by which this gene confers resistance against MoT, remains to be fully elucidated.

View Article and Find Full Text PDF

In wheat allergy dependent on augmentation factors (WALDA), allergic reactions occur when wheat ingestion is combined with exercise or rarely other augmentation factors. We analyzed clinical characteristics and disease burden in recreationally active and trained individuals with WALDA diagnosed by oral challenge test. Clinical characteristics, serological data, and quality of life (QOL) questionnaires were analyzed and completed with follow-up interviews.

View Article and Find Full Text PDF

Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.

View Article and Find Full Text PDF