Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Most hearing loss often results from permanent damage to cochlear hair cells, and effective treatments remain limited. A reliable, scalable, and physiologically relevant ear model can accelerate the development of hearing-loss protection therapeutics for injury prevention and hearing restoration. The challenge remains on screening delivery systems for regenerative compounds, and no screening systems exist that capture the complexity of inner ear properties. Here, we present a high-throughput, microphysiological system (MPS) featuring a round window membrane (RWM) model co-cultured with murine auditory hair cells. It is integrated with a transepithelial electrical resistance (TEER) sensor module to monitor epithelial barrier function development in continuous measurements, without sacrificing a sample and thus allowing "real-time" monitoring of the RWM construct progress. The MPS integrates a syringe pump, tissue compartment, multi-channel fluid distributor, and sensors into a microfluidic continuous-flow system, allowing for on-demand sample collections of analytes triggered by the cellular response to the introduced compounds. Drug screening was conducted with protective antibiotic, antioxidant, and anti-inflammatory compounds. RWM cell and hair cell viability, TD values, and membrane integrity were measured. In addition, we also designed a graphene field-effect transistor (GFET)-based cytokine sensor to study proinflammatory cytokine release from cells during damaging exposure. The system was employed to assess drug diffusion efficiency, cell viability, and the drug's TD and compared to published data from animal studies. Cell membrane integrity was also analyzed, and proinflammatory cytokine release was measured using a GFET sensor. We evaluated and monitored the real-time structural integrity of the RWM epithelial barrier using the integrated TEER sensor in the MPS. The sensor's ability to measure TEER and cytokine levels was validated by comparing its readings to those obtained from commercial TEER signal processing equipment and standard cytokine concentration measurements. This ear-on-a-chip design enables high-throughput screening of investigational new drugs, reducing the need for animal models in complex studies of inner ear damage and regeneration. It allows for the real-time study of drug responses. It facilitates the development and identifying novel agents that protect against hearing loss and the design of delivery methods for hearing regeneration compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4lc01025f | DOI Listing |