Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Recent studies have indicated that the lung microbiome may contribute to the development and progression of lung cancer, although the precise mechanisms remain to be fully elucidated. This study sought to delineate the microbial composition within lung cancer tissues and identify potential microbial risk factors. Tissue samples were collected from patients newly diagnosed with pulmonary opacities, and metagenomic next-generation sequencing was employed to analyze these samples. Tissue samples were collected from 130 patients with pulmonary opacities, categorized into lung cancer (50 cases), pulmonary infection (53 cases), and non-infectious pulmonary diseases (27 cases). The non-infectious group served as the primary control. The diversity of the lung microbiome in lung cancer tissues was found to be comparable to that observed in non-infectious benign pulmonary conditions. Specific phyla and genera exhibited increased abundance in lung cancer tissues. Additionally, correlations were established between certain microorganisms and clinical characteristics associated with lung cancer. Multivariate binary logistic regression analysis revealed that age and Shewanella were independent risk factors for lung cancer development. This study suggests that the composition of the lung microbiome differs significantly between individuals with lung cancer and those with benign pulmonary conditions, with certain microbes such as Shewanella potentially serving as risk factors for lung cancer progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052825 | PMC |
http://dx.doi.org/10.1038/s41598-025-98424-y | DOI Listing |