Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

U-shaped networks and its variants have demonstrated exceptional results for medical image segmentation. In this paper, we propose a novel dual self-distillation (DSD) framework in U-shaped networks for volumetric medical image segmentation. DSD distills knowledge from the ground-truth segmentation labels to the decoder layers. Additionally, DSD also distills knowledge from the deepest decoder and encoder layer to the shallower decoder and encoder layers respectively of a single U-shaped network. DSD is a general training strategy that could be attached to the backbone architecture of any U-shaped network to further improve its segmentation performance. We attached DSD on several state-of-the-art U-shaped backbones, and extensive experiments on various public 3D medical image segmentation datasets (cardiac substructure, brain tumor and Hippocampus) demonstrated significant improvement over the same backbones without DSD. On average, after attaching DSD to the U-shaped backbones, we observed an increase of 2.82%, 4.53% and 1.3% in Dice similarity score, a decrease of 7.15 mm, 6.48 mm and 0.76 mm in the Hausdorff distance, for cardiac substructure, brain tumor and Hippocampus segmentation, respectively. These improvements were achieved with negligible increase in the number of trainable parameters and training time. Our proposed DSD framework also led to significant qualitative improvements for cardiac substructure, brain tumor and Hippocampus segmentation over the U-shaped backbones. The source code is publicly available at https://github.com/soumbane/DualSelfDistillation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354338PMC
http://dx.doi.org/10.1109/TBME.2025.3566995DOI Listing

Publication Analysis

Top Keywords

medical image
16
image segmentation
16
u-shaped networks
12
u-shaped backbones
12
cardiac substructure
12
substructure brain
12
brain tumor
12
tumor hippocampus
12
volumetric medical
8
segmentation
8

Similar Publications

Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.

View Article and Find Full Text PDF

Importance: Transthyretin cardiac amyloidosis (ATTR-CA) is an underdiagnosed but treatable cause of heart failure (HF) in older individuals that occurs in the context of normal wild-type (ATTRwt-CA) or an abnormal inherited (ATTRv-CA) TTR gene variant. While the most common inherited TTR variant, V142I, occurs in 3% to 4% of self-identified Black Americans and is associated with excess morbidity and mortality, the prevalence of ATTR-CA in this at-risk population is unknown.

Objective: To define the prevalence of ATTR-CA and proportions attributable to ATTRwt-CA or ATTRv-CA among older Black and Caribbean Hispanic individuals with HF.

View Article and Find Full Text PDF

Alpha oscillations have been implicated in the maintenance of working memory representations. Notably, when memorised content is spatially lateralised, the power of posterior alpha activity exhibits corresponding lateralisation during the retention interval, consistent with the retinotopic organisation of the visual cortex. Beyond power, alpha frequency has also been linked to memory performan ce, with faster alpha rhythms associated with enhanced retention.

View Article and Find Full Text PDF