A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Rethinking feature representation and attention mechanisms in intelligent recognition of leaf pests and diseases in wheat. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To address the above problems and needs, we rethink the feature representation and attention mechanism in intelligent recognition of wheat leaf diseases and pests, and propose a representation and recognition network (RReNet) based on the feature attention mechanism. RReNet captures key information more efficiently by focusing on complex pest and disease characteristics and fusing multi-semantic feature information. In addition, RReNet further enhances the perception of complex disease and pest features by using four layers of detection units and fast IoU loss function, which significantly improves the accuracy and robustness of wheat leaf disease and pest recognition. Tests on a challenging wheat leaf pest and disease dataset with twelve pest and disease types show that RReNet achieves precision, recall and mAP as high as 94.1%, 95.7% and 98.3% respectively. Also, ablation experiments proved the effectiveness of all parts of the proposed method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050270PMC
http://dx.doi.org/10.1038/s41598-025-99027-3DOI Listing

Publication Analysis

Top Keywords

pest disease
16
wheat leaf
12
feature representation
8
representation attention
8
intelligent recognition
8
complex pest
8
growth wheat
8
wheat crops
8
attention mechanism
8
disease pest
8

Similar Publications