Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To address the above problems and needs, we rethink the feature representation and attention mechanism in intelligent recognition of wheat leaf diseases and pests, and propose a representation and recognition network (RReNet) based on the feature attention mechanism. RReNet captures key information more efficiently by focusing on complex pest and disease characteristics and fusing multi-semantic feature information. In addition, RReNet further enhances the perception of complex disease and pest features by using four layers of detection units and fast IoU loss function, which significantly improves the accuracy and robustness of wheat leaf disease and pest recognition. Tests on a challenging wheat leaf pest and disease dataset with twelve pest and disease types show that RReNet achieves precision, recall and mAP as high as 94.1%, 95.7% and 98.3% respectively. Also, ablation experiments proved the effectiveness of all parts of the proposed method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050270 | PMC |
http://dx.doi.org/10.1038/s41598-025-99027-3 | DOI Listing |