98%
921
2 minutes
20
Microplastics (MPs) are prevalent in marine environments and can adsorb contaminants from surrounding seawater, potentially transferring harmful chemicals through the food chain and raising ecological concerns. While the adsorption of aquatic pollutants by MPs has been intensively studied, research on phthalate esters (PAEs, common plasticizers frequently found in seawater) remains limited, primarily focusing on pristine MPs in artificial media. This study characterized the surface physicochemical properties of polyethylene (PE) and polystyrene (PS) MPs before and after natural aging for one week to three months off the coast, and investigated the adsorption isotherms of dibutyl phthalate (DBP, one of the most abundant PAEs in seawater) on these MPs in both natural seawater and ultrapure water. Surface characterization revealed significant alterations in MP surface characteristics due to natural aging, with morphologies and nanomechanical features varied by MP type and oxidation occurring after one-month aging. The best-performing Langmuir-Freundlich model suggested that DBP adsorption onto MPs involved multilayer processes on heterogeneous surfaces with varying adsorption energies. Further analysis indicated that PS had a higher DBP adsorption capacity than PE, attributed to its porous glassy structure and π-π interactions with DBP. The trivial impact of natural aging could relate to competing effects of increased roughness and the formation of polar oxygen-containing groups on aged MPs. The "salting-out" effect in natural seawater was likely impeded by free ion competition and MP aggregation under higher ionic strength. This study provides valuable insights into the interactions between MPs and their coexisting contaminants in marine environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2025.118064 | DOI Listing |
Metabolomics
September 2025
Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
Introduction: Knockout of the Fmo5 gene in mice led to a lean, slow-ageing phenotype characterised by the presence of 2,3-butanediol isomers in their urine and plasma. Oral treatment of wildtype mice with 2,3-butanediol led to a low cholesterol, low epididymal fat phenotype.
Objectives: Determine if significant, heterozygous coding variations in human FMO5 would give rise to similar clinical and metabolic phenotypes in humans, as in C57BL/6J mice with knockout of the Fmo5 gene and in particular, increased excretion of 2,3-butanediol.
FASEB J
September 2025
Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
Age-related cataract (ARC) represents a major global cause of visual impairment, with ultraviolet B (UVB) radiation recognized as a primary contributor to oxidative damage in the lens. FOXO3, a key regulator of aging, apoptosis, and oxidative stress-induced cell death, was investigated for its role and regulatory mechanisms in UVB-induced oxidative stress using human lens epithelial cells (HLECs). A progressive decrease in FOXO3 protein expression was observed in the lens capsules across various stages of cataract progression, as well as in UVB-exposed animal models and UVB-treated HLECs.
View Article and Find Full Text PDFJ Oral Rehabil
September 2025
Department of Prosthodontics, Dental School, National and Kapodistrian University of Athens, Athens, Greece.
Background: Although oral diseases and frailty can be met earlier in life, there is limited information on their association across the lifespan.
Objectives: To scope for the association of oral factors with physical frailty in Greek community-dwelling adults.
Methods: Participants were over 18 years of age with ≥ 20 natural teeth, ≥ 10 occlusal contacts, and no removable dentures.
Aging Cell
September 2025
Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
The CST (CTC1-STN1-TEN1) complex, a single-stranded DNA (ssDNA) binding complex, is essential for telomere maintenance and genome stability. Depletion of either CTC1 or STN1 results in cellular senescence, while mutations in these components are associated with severe hereditary disorders. In this study, we demonstrate that the direct STN1-CTC1 interaction stabilizes CTC1 by preventing its degradation via TRIM32 mediated ubiquitination.
View Article and Find Full Text PDFJ Food Sci
September 2025
College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, China.
The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.
View Article and Find Full Text PDF