Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Dexrazoxane, a putative iron chelator, is effective in preventing doxorubicin-induced cardiotoxicity. However, dexrazoxane is also a catalytic inhibitor of topoisomerase 2b (Top2b), a key mediator of doxorubicin toxicity. Preclinical studies have shown that dexrazoxane induces Top2b degradation, and early administration (8 h before doxorubicin) can prevent doxorubicin-induced cardiotoxicity. In this study, we investigated the dose-response relationship and time course of dexrazoxane-induced Top2b degradation in human volunteers.

Methods: Twenty-five healthy female volunteers received an intravenous infusion of dexrazoxane at doses ranging from 100 mg/m to 500 mg/m. Blood samples were collected hourly from time zero to 12 h, as well as at 24- and 48-h post-infusion. Peripheral blood mononuclear cells (PBMCs) were isolated, nuclear fractions were extracted, and Top2b expression was analyzed by western blot using Lamin B1 as a control. A linear mixed-effects model was used to assess differences among the five dose groups.

Results: Dexrazoxane infusion led to a rapid and sustained reduction of Top2b in PBMCs, lasting up to 12 h. Statistical analysis revealed a significant difference in Top2b levels among the five dose groups (p = 0.0002). Subgroup analysis identified a significant difference between the 100 mg/m and 500 mg/m groups (p = 0.005). However, topoisomerase 2a (Top2a), the molecular target of doxorubicin's tumor-killing effect, remained unchanged following dexrazoxane infusion.

Conclusions: Findings from this dose-response and time-course study can inform the design of future clinical trials investigating the efficacy of early dexrazoxane administration in preventing doxorubicin-induced cardiotoxicity while minimizing the risk of tumor protection.

Trial Registration: (Funded by the National Institute of Health, RO1HL151993; PHOENIX trials, ClinicalTrials.gov number, NCT03930680.).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046681PMC
http://dx.doi.org/10.1186/s40959-025-00339-0DOI Listing

Publication Analysis

Top Keywords

doxorubicin-induced cardiotoxicity
12
early administration
8
dexrazoxane
8
time course
8
course dexrazoxane-induced
8
preventing doxorubicin-induced
8
top2b degradation
8
100 mg/m 500 mg/m
8
top2b
6
prevention heart
4

Similar Publications

20-Deoxyingenol attenuated doxorubicin-induced cardiotoxicity by promoting autolysosome degradation through the UCHL3-TFEB pathway.

Phytomedicine

September 2025

Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China; Heart

Background: Impaired autophagic flux is an essential contributor to doxorubicin (DOX)-induced cardiotoxicity (DIC). TFEB is recognized as a key regulator of DOX-induced autolysosome accumulation; however, the mechanisms by which DOX suppresses TFEB expression remain unclear. 20-Deoxyingenol (20-DOI) is a small-molecule compound whose potential protective effects against DIC has not yet been elucidated.

View Article and Find Full Text PDF

Small extracellular vesicles orchestrated pathological communications between breast cancer cells and cardiomyocytes as a novel mechanism exacerbating anthracycline cardiotoxicity by fueling ferroptosis.

Redox Biol

September 2025

National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, 100853, Beijing, China; Institute of Geriatric Medicine, The Second Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.

Small extracellular vesicles (sEVs) critically orchestrate inter-tissue and inter-organ communications and may play essential roles in heart-tumor interaction. However, whether cancer-secreted sEVs affect the progression of doxorubicin-induced cardiotoxicity (DOXIC) via orchestrating the tumor cell-cardiomyocyte crosstalk has not yet been explored. Herein, we reveal that Doxorubicin (DOX)-treated breast cancer cells secrete sEVs (D-BCC-sEVs) that exacerbate DOX-induced ferroptosis of human iPSC-derived cardiomyocytes (hiCMs).

View Article and Find Full Text PDF

Doxorubicin (DOX)‑induced cardiotoxicity (DIC) remains a critical challenge in cancer therapy, significantly limiting its use in clinical practice. The underlying mechanisms involve disruptions in cardiac metabolism and mitochondrial dysfunction. The heart relies on mitochondrial oxidative phosphorylation to produce ATP, which is essential for maintaining both contraction and relaxation.

View Article and Find Full Text PDF

Mitochondrial sORF-Encoded Peptide MODICA Protects the Heart From Doxorubicin-Induced Cardiac Injury by Suppressing VDAC Oligomerization.

Circ Heart Fail

September 2025

Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (J.W., K.L., Y.Y., X.X., T.X., H.X., H.Z., T.D., Y.L., C.L., X.L., Y.D., J.-S.O., Y.C., Z.-P.H.).

Background: Doxorubicin (DOX) cardiotoxicity increases cardiovascular risk in cancer patients, mainly through mitochondrial damage. However, the underlying mechanisms remain unclear, and whether mitochondrial short open reading frame-encoded peptides can mitigate DOX-induced cardiotoxicity is unknown.

Methods: Five adeno-associated viruses expressing mitochondrial short open reading frame-encoded peptides under the cardiac troponin T promoter, including MODICA (mito-SEP protector against DOX-induced cardiac injury), were screened in a DOX-induced cardiotoxicity mouse model (n=3-5 per group).

View Article and Find Full Text PDF

Background: Doxorubicin (Dox) is a chemotherapy medication used in the therapy of cancers. However, despite its killing of cancer cells, Dox is toxic to the heart and can lead to heart failure. This outcome in turn poses a therapeutic challenge given the limited treatment options available to these individuals.

View Article and Find Full Text PDF