Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Contemporary T-cell immunotherapies, despite impressive targeting precision, are hindered by aberrant cytokine release and restrictive targeting stoichiometry. We introduce a two-component T-cell immunotherapy targeting B-cell malignancies: Multi-Antigen T-Cell Hybridizers (MATCH). This split antibody technology differs from current therapies by separating cancer cell-targeting components from T cell-engaging components. We demonstrate that this two-component structure facilitates tunable T-cell activation. αCD19 and αCD20 MATCH, administered in two steps, are both compared to the clinical standard bispecific antibody, blinatumomab. In vitro two-dimensional dose analysis and cytokine release data indicate MATCH improves cancer clearance with reduced cytokine release. Cytolytic mechanisms of action are evaluated. αCD20 MATCH anti-cancer efficacy is assayed using a human lymphoma murine model. Decreasing T-cell engager dose 10-fold yields comparable efficacy to non-reduced doses. Ultimately, this split-antibody paradigm may enhance antigen targeting while reducing cytokine release, with such safety and efficacy advantages augmented by the future possibility of multi-antigen targeting with MATCH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2025.102825 | DOI Listing |