Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The development of artificial intelligence (AI) applications in healthcare is often positioned as a solution to the greatest challenges facing global health. Advocates propose that AI can bridge gaps in care delivery and access, improving healthcare quality and reducing inequity, including in resource-constrained settings. A broad base of critical scholarship has highlighted important issues with healthcare AI, including algorithmic bias and inequitable and inaccurate model outputs. While such criticisms are valid, there exists a much more fundamental challenge that is often overlooked in global health policy debates: the dangerous mismatch between AI's imagined benefits and the material realities of healthcare systems globally. AI cannot be deployed effectively or ethically in contexts lacking sufficient social and material infrastructure and resources to provide effective healthcare services. Continued investments in AI within unprepared, under-resourced contexts risk misallocating resources and potentially causing more harm than good. The article concludes by providing concrete questions to assess AI systemic capacity and socio-technical readiness in global health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046908 | PMC |
http://dx.doi.org/10.1186/s44263-025-00158-6 | DOI Listing |