Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate. Using multiple, independent molecular, rodent, and in vitro experimental models, we found that microbiome composition influenced multiple oxalate-microbe-host interfaces. Importantly, the administration of the oxalate-degrading specialist, was only effective against a poor oxalate-degrading microbiota background and gives critical new insights into why clinical intervention trials with this species exhibit variable outcomes. Data suggest that, while heterogeneity in the microbiome impacts multiple diet-host-microbe interfaces, metabolic redundancy among diverse microorganisms in specific diet-microbe axes is a critical variable that may impact the efficacy of bacteriotherapies, which can help guide patient and probiotic selection criteria in probiotic clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045624PMC
http://dx.doi.org/10.7554/eLife.104121DOI Listing

Publication Analysis

Top Keywords

complex system
4
system modeling
4
modeling reveals
4
reveals oxalate
4
oxalate homeostasis
4
homeostasis driven
4
driven diverse
4
diverse oxalate-degrading
4
oxalate-degrading bacteria
4
bacteria decades
4

Similar Publications

Hydrogen Bond Disruption-Induced Ion Rearrangement in Acetonitrile-Water-Sodium Sulfate Solutions.

J Phys Chem B

September 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.

View Article and Find Full Text PDF

Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).

Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.

View Article and Find Full Text PDF

Background: The treatment of critically ill patients in intensive care units is becoming increasingly complex. For example, organ transplants are regularly carried out, the recipients are seriously ill, and the postoperative course can be complicated. This is why organ replacement and hemadsorption procedures are becoming increasingly important.

View Article and Find Full Text PDF

Whole genome sequence analysis of low-density lipoprotein cholesterol across 246 K individuals.

Genome Biol

September 2025

Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.

Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF