98%
921
2 minutes
20
Although the basic modes of ion transport in solid polymer electrolytes (SPEs) are already classified and well-described, their distribution in typical polymer electrolytes is not clear and neither are the effects on the distribution by different degrees of ion-ion and ion-polymer interactions. Here, the ion-transport mechanisms in poly(ethylene oxide) are studied along with poly(ε-caprolactone) at different molecular weights and LiTFSI salt concentrations using molecular dynamics simulations. Through tracking of the cation coordination changes, three transport mechanisms are categorized, i.e., ion hopping, continuous motion (successive exchange of the coordination sphere), and vehicular transport. The observed dominant transport mechanism is in all cases continuous motion, which changes from polymer-mediated to anion-mediated with increasing salt concentration, while polymer-mediated vehicular transport is not observed to be a major contributor to cation transport. In both systems, ion hopping is also essentially absent, as can be expected in systems with strong ion-polymer interactions. The results illustrate how the usual description of ion transport in polymer electrolytes as coupled to segmental motions is too simplistic to catch the full essence of the ion-transport phenomena, whereas the frequently used notion of "ion hopping" in the majority of cases is incorrect for SPEs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038787 | PMC |
http://dx.doi.org/10.1021/acsapm.4c03724 | DOI Listing |
Dalton Trans
September 2025
Laboratory for New Ceramics, Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
Polymer-derived ceramics are a versatile class of multifunctional materials synthesized the high-temperature treatment of a preceramic polymer. In this work, we report the synthesis of a vanadium carbide-embedded carbonaceous hybrid by pyrolyzing a modified preceramic polymer incorporating vanadium acetylacetonate in a polysilsesquioxane followed by hydrofluoric acid etching. The structural and microscopic characterisation confirmed the uniform distribution of nanoparticulate vanadium carbide in the matrix.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.
View Article and Find Full Text PDFSmall Methods
September 2025
Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.
As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.
View Article and Find Full Text PDFNanoscale
September 2025
Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342030, India.
Understanding ion transport mechanisms in sodium ion-based polymer electrolytes is critical, considering the emergence of sodium ion electrolyte technologies as sustainable alternatives to lithium-based systems. In this paper, we employ all-atom molecular dynamics simulations to investigate the salt concentration () effects on ionic conductivity () mechanisms in sodium hexafluorophosphate (NaPF) in polyethylene oxide (PEO) electrolytes. Sodium ions exhibit ion solvation shell characteristics comparable to those of lithium-based polymer electrolytes, with similar anion coordination but more populated oxygen coordination in the polymer matrix.
View Article and Find Full Text PDFJ Food Sci
September 2025
College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, China.
The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.
View Article and Find Full Text PDF