Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurately resolving the composition of tumor-infiltrating leukocytes is pivotal for advancing cancer immunotherapy strategies. Despite the success of some clinical trials, applying these strategies remains limited due to the challenges in deciphering the immune microenvironment. In this study, we developed a streamlined, two-step workflow to address the complexity of bioinformatics processes involved in analyzing immune cell composition from transcriptomics data. Our dockerized toolkit, DOCexpress_fastqc, integrates the hisat2-stringtie pipeline with customized scripts within Galaxy/Docker environments, facilitating RNA sequencing (RNA-seq) gene expression profiling. The output from DOCexpress_fastqc is seamlessly formatted with mySORT, a web application that employs a deconvolution algorithm to determine the immune content across 21 cell subclasses. We validated mySORT using synthetic pseudo-bulk data derived from single-cell RNA sequencing (scRNA-seq) datasets. Our predictions exhibit strong concordance with the ground-truth immune cell composition, achieving Pearson's correlation coefficients of 0.871 in melanoma patients and 0.775 in head and neck cancer patients. Additionally, mySORT outperforms existing methods like CIBERSORT in accuracy and provides a wide range of data visualization features, such as hierarchical clustering and cell complexity plots. The toolkit and web application are freely available for the research community, providing enhanced resolution for conventional bulk RNA sequencing data and facilitating the analysis of immune microenvironment responses in immunotherapy. The mySORT demo website and Docker image are free at https://mysort.iis.sinica.edu.tw and https://hub.docker.com/r/lsbnb/mysort_2022 .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044707PMC
http://dx.doi.org/10.1186/s12885-025-14089-wDOI Listing

Publication Analysis

Top Keywords

immune microenvironment
12
rna sequencing
12
immune cell
8
cell composition
8
web application
8
immune
5
unveiling immune
4
microenvironment complex
4
complex tissues
4
tissues tumors
4

Similar Publications

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF

Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME) and tumour-enhanced myelopoiesis in the bone marrow fuels these populations. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for Nfe2l2 (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression.

View Article and Find Full Text PDF

Pancreatic cancer is a highly aggressive malignancy with a dismal prognosis, characterized by a complex tumor microenvironment that promotes immunosuppression and limits the efficacy of immune checkpoint blockade (ICB) therapy. Fibroblast activation protein (FAP) is overexpressed in the tumor stroma and represents a promising target for therapeutic intervention. Here, we developed a novel antibody-drug conjugate (ADC) targeting FAP, and investigated its anti-tumor activity and ability to enhance ICB efficacy in pancreatic cancer.

View Article and Find Full Text PDF

Targeted hotspot profiling reveals a functionally relevant mutation in bladder cancer.

Urol Oncol

September 2025

Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:

Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.

Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.

View Article and Find Full Text PDF

Prostate cancer (PC) is notoriously known for exhibiting an immunologically cold phenotype in the tumor immune microenvironment (TIME), leading to the need for interventions to enhance immunotherapy efficacy. Recent findings by Zhao in the identified stromal monoamine oxidase A (MAOA), a key enzyme that degrades monoamine neurotransmitters and plays a role in the neuroendocrine system, as a critical regulator of the immune response to PC. Altering MAOA levels in myofibroblastic cancer-associated fibroblasts, either genetically or pharmacologically, can reprogram PC's TIME to modulate CD8 T cell-mediated cytotoxicity through the WNT5A-Ca²-NFATC1 signaling axis, highlighting the stromal influences on CD8 T cell cytotoxic activity within the TIME.

View Article and Find Full Text PDF