Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Virological plaque assay is the major method of detecting and quantifying infectious viruses in research and diagnostic samples. Furthermore, viral plaque phenotypes contain information about the life cycle and spreading mechanism of the virus forming them. While some modernisations have been proposed, the conventional assay typically involves manual quantification of plaque phenotypes, which is both laborious and time-consuming. Here, we present an annotated dataset of digital photographs of plaque assay plates of Vaccinia virus - a prototypic propoxvirus. We demonstrate how analysis of these plates can be performed using deep learning by training models based on the leading architecture for biomedical instance segmentation - StarDist. Finally, we show that the entire analysis can be achieved in a single step by HydraStarDist - the modified architecture we propose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12043936PMC
http://dx.doi.org/10.1038/s41597-025-05030-8DOI Listing

Publication Analysis

Top Keywords

vaccinia virus
8
deep learning
8
plaque assay
8
plaque phenotypes
8
plaque
5
digital photography
4
photography dataset
4
dataset vaccinia
4
virus plaque
4
plaque quantification
4

Similar Publications

Purpose: This narrative review aims to provide an overview of current knowledge on mpox, emphasizing updated epidemiology and recent advances in treatment and prevention strategies, in light of the latest outbreaks.

Methods: We searched PubMed and Google Scholar for publications on 'Mpox' and 'Monkeypox' up to June 5, 2025. Grey literature from governmental and health agencies was also accessed for outbreak reports and guidelines where published evidence was unavailable.

View Article and Find Full Text PDF

The global outbreak of the mpox in humans, caused by the mpox virus (MPXV), underscores the urgent need for safe and effective therapeutics. In this study, we characterized the dominant MPXV immunogens, M1R and B6R, by sequencing monoclonal antibodies (MAbs) from the immunized mice and analyzing their epitopes and functions through in vitro and in vivo assessments of binding and antiviral activities. Several broadly effective anti-M1R and anti-B6R neutralizing MAbs were identified and they exhibited enhanced antiviral effects against MPXV or vaccinia virus (VACV) when used in antibody cocktail and bispecific antibody designs.

View Article and Find Full Text PDF

Atypical cellular gill disease (ACGD) in ayu (Plecoglossus altivelis) caused by P. altivelis poxvirus (PaPV) infection has led to significant economic losses in Japanese aquaculture. The propagation of PaPV has not yet been successfully achieved in cultured cells.

View Article and Find Full Text PDF

Remarkable photodynamic activity of tetra-cationic porphyrins against Vaccinia virus and Monkeypox virus.

Antiviral Res

September 2025

Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Brazil; Programa de Pós-graduação em Medicina Veterinária, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Brazil. Electronic address: eduardofurtadof

In this context, we evaluated the photodynamic effects of four cationic tetra-(pyridyl)porphyrins against Vaccinia virus Western Reserve (VACV WR) and Monkeypox virus (MPXV). The porphyrins were initially analyzed for cytotoxicity to Vero cells by MTT assay and the maximal non-cytotoxic concentrations were used in virucidal assays. For virucidal assays, VACV-WR (107.

View Article and Find Full Text PDF

Background: Limited mpox vaccination coverage, declining cross-protection from historical smallpox vaccination campaigns, and persistent zoonotic reservoirs leave many sub-Saharan countries susceptible to mpox outbreaks. With millions of vaccine doses made available to the region since late 2024 and the absence of country-specific guidelines for allocation, estimating the country-specific impact of one-time mass vaccination strategies is necessary for ongoing outbreaks and other countries at future risk.

Methods And Findings: We adapted a next generation matrix model to project disease transmission potential for 47 sub-Saharan countries from 2025 to 2050 under four transmission scenarios with different contributions of community versus sexual contacts.

View Article and Find Full Text PDF