Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: To assess the effect of the combination of deep learning reconstruction (DLR) and time-resolved maximum intensity projection (tMIP) or time-resolved average (tAve) post-processing method on image quality of CTA derived from low-dose cerebral CTP.

Methods: Thirty patients underwent regular dose CTP (Group A) and other thirty with low-dose (Group B) were retrospectively enrolled. Group A were reconstructed with hybrid iterative reconstruction (R-HIR). In Group B, four image datasets of CTA were gained: L-HIR, L-DLR, L-DLR and L-DLR. The CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and subjective images quality were calculated and compared. The Intraclass Correlation (ICC) between CTA and MRA of two subgroups were calculated.

Results: The low-dose group achieved reduction of radiation dose by 33% in single peak arterial phase and 18% in total compared to the regular dose group (single phase: 0.12 mSv vs 0.18 mSv; total: 1.91mSv vs 2.33mSv). The L-DLR demonstrated higher CT values in vessels compared to R-HIR (all P < 0.05). The CNR of vessels in L-HIR were statistically inferior to R-HIR (all P < 0.001). There was no significant different in image noise and CNR of vessels between L-DLR and R-HIR (all P > 0.05, except P = 0.05 for CNR of ICAs, 77.19 ± 21.64 vs 73.54 ± 37.03). However, the L-DLR and L-DLR presented lower image noise, higher CNR (all P < 0.05) and subjective scores (all P < 0.001) in vessels than R-HIR. The diagnostic accuracy in Group B was excellent (ICC = 0.944).

Conclusion: Combining DLR with tMIP or tAve allows for reduction in radiation dose by about 33% in single peak arterial phase and 18% in total in CTP scanning, while further improving image quality of CTA derived from CTP data when compared to HIR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042446PMC
http://dx.doi.org/10.1186/s12880-025-01623-2DOI Listing

Publication Analysis

Top Keywords

deep learning
8
learning reconstruction
8
post-processing method
8
image quality
8
quality cta
8
cta derived
8
derived low-dose
8
low-dose cerebral
8
regular dose
8
low-dose group
8

Similar Publications

Neuroimaging Data Informed Mood and Psychosis Diagnosis Using an Ensemble Deep Multimodal Framework.

Hum Brain Mapp

September 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.

View Article and Find Full Text PDF

A robust deep learning-driven framework for detecting Parkinson's disease using EEG.

Comput Methods Biomech Biomed Engin

September 2025

Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.

Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.

View Article and Find Full Text PDF

Introduction: Pulmonary embolism (PE) is a life-threatening condition with well-defined management strategies; however, the presence of a clot-in-transit (CIT)-a mobile thrombus within the right heart-introduces a uniquely high-risk scenario associated with a significantly elevated mortality rate. While several therapeutic approaches are available-including anticoagulation, systemic thrombolysis, surgical embolectomy, and catheter-directed therapies-there is no established consensus on a superior treatment modality. Catheter-based mechanical thrombectomy has emerged as a promising, minimally invasive alternative that mitigates the bleeding risks of systemic thrombolysis and the invasiveness of surgery.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF