98%
921
2 minutes
20
The SARS-CoV-2 Omicron BA.2.86 variant and its descendant lineages, including JN.1, are rapidly spreading and becoming dominant globally. Vaccination is an essential primary preventative measure. While mRNA vaccines have been widely used worldwide, it is essential that we continue to prepare alternative vaccine modalities. Consistent with WHO recommendations, we developed an inactivated Omicron XBB.1.5 vaccine and assessed its efficacy against XBB.1.5 and JN.1 strains. Immunization with the inactivated XBB.1.5 vaccine induced antigen-specific antibodies leading to protection from XBB.1.5 and antigenically distinct JN.1 strains in a hamster model. In addition, we found that immunization reduced viral replication in hamster respiratory organs, suggesting protection against XBB.1.5 and JN.1 variants. Our findings highlight the potential of inactivated vaccines against evolving SARS-CoV-2 variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790961 | PMC |
http://dx.doi.org/10.1038/s44298-025-00096-y | DOI Listing |
J Med Virol
February 2025
Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, P. R. China.
Immunity against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can be induced through either infection with the virus or vaccination, providing protection against reinfection or reducing the risk of severe clinical outcomes. In this study, we recruited 172 volunteers who received different vaccination regimens, including 124 individuals who had recovered from breakthrough infections caused by the Omicron variant (27 with 2 doses, 49 with 3 doses, and 48 with 4 doses) and 48 healthy donors who did not experience breakthrough infections (all of whom received a fourth dose during the infection wave). We measured neutralizing antibody levels against Omicron BA.
View Article and Find Full Text PDF