98%
921
2 minutes
20
ObjectiveThis study aimed to develop and validate a radiomics nomogram based on 40 KeV images and iodine density maps derived from dual-layer spectral detector CT (DLSDCT) for predicting cervical lymph node (LN) metastasis in patients with papillary thyroid carcinoma (PTC).MethodsA total of 214 LNs from 143 patients with histopathologically confirmed PTC in our hospital were included in the study. The LNs were randomly divided into a training group (n = 150) and a validation group (n = 64) in a 7:3 ratio. Radiomics features were extracted from non-enhanced, arterial phase, and venous phase 40 KeV images, as well as arterial phase and venous phase iodine density maps. Recursive feature elimination (RFE) and logistic regression (LR) were used for feature selection and radiomics score construction. A multivariate logistic regression model was established, incorporating the radiomics score and CT image features. The receiver operating characteristic (ROC) curve was used to evaluate the model's performance. The Hosmer-Lemeshow test and calibration curve were used to assess the model's goodness of fit, while decision curve analysis (DCA) evaluated its clinical applicability.ResultsThe radiomics features consisted of 11 LN-related features that exhibited a good predictive effect. The radiomics nomogram, which included radiomics features, lymphatic hilum status, and significant enhancement in the arterial phase, demonstrated excellent calibration and discrimination in both the training set (AUC = 0.955; 95% confidence interval [CI]: 0.924-0.985) and the validation set (AUC = 0.928; 95% CI: 0.861-0.994). The decision curve analysis confirmed the clinical validity of our nomogram. The DeLong test comparing the radiomics-clinical nomogram with the clinical model yielded a -value of <0.001.ConclusionsThe radiomics nomogram, incorporating radiomics features and CT image features, serves as a non-invasive preoperative prediction tool with high accuracy in predicting cervical lymph node metastasis in patients with PTC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/18758592251322028 | DOI Listing |
Abdom Radiol (NY)
September 2025
Department of Radiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
Background: We aimed to develop and validate a radiomics-based machine learning nomogram using multiparametric magnetic resonance imaging to preoperatively predict substantial lymphovascular space invasion in patients with endometrial cancer.
Methods: This retrospective dual-center study included patients with histologically confirmed endometrial cancer who underwent preoperative magnetic resonance imaging (MRI). The patients were divided into training and test sets.
J Ultrasound Med
September 2025
Department of Ultrasound, Donghai Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China.
Objective: The aim of this study is to evaluate the prognostic performance of a nomogram integrating clinical parameters with deep learning radiomics (DLRN) features derived from ultrasound and multi-sequence magnetic resonance imaging (MRI) for predicting survival, recurrence, and metastasis in patients diagnosed with triple-negative breast cancer (TNBC) undergoing neoadjuvant chemotherapy (NAC).
Methods: This retrospective, multicenter study included 103 patients with histopathologically confirmed TNBC across four institutions. The training group comprised 72 cases from the First People's Hospital of Lianyungang, while the validation group included 31 cases from three external centers.
Front Oncol
August 2025
Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China.
Purpose: To develop a magnetic resonance imaging (MRI)-based radiomics nomogram to predict lymphovascular space invasion (LVSI) status in patients with early-stage cervical adenocarcinoma (CAC).
Methods: Clinicopathological and MRI data from 310 patients with histopathologically confirmed early-stage CAC were retrospectively analyzed. Patients were divided into training (n = 186) and validation (n = 124) cohorts.
Int J Chron Obstruct Pulmon Dis
September 2025
Department of Cardiovascular Center, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, People's Republic of China.
Objective: This study aimed to develop and validate a deep learning radiomics (DLR) nomogram for individualized CHD risk assessment in the COPD population.
Methods: This retrospective study included 543 COPD patients from two different centers. Comprehensive clinical and imaging data were collected for all participants.
Front Endocrinol (Lausanne)
September 2025
Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China.
This research aimed to investigate the preoperative risk factors for lymph node metastasis (LNM) in medullary thyroid carcinoma (MTC) using clinical, pathological, serological, ultrasound, and radiomics characteristics. Additionally, it aimed to explore the diagnostic precision of ultrasound (US) for MTC and LNM. A retrospective analysis of 111 nodules was eligible from 104 patients from January 1, 2000, to December 28, 2024.
View Article and Find Full Text PDF