Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protein-RNA interactions govern nearly every aspect of RNA metabolism and are frequently dysregulated in disease. While individual protein residues and RNA nucleotides critical for these interactions have been characterized, scalable methods that jointly map protein- and RNA-level determinants remain limited. RNA deaminase fusions have emerged as a powerful strategy to identify transcriptome-wide targets of RNA-binding proteins by converting binding events into site-specific nucleotide edits. Here, we demonstrate that this 'RNA recording' approach enables high-throughput mutational scanning of protein-RNA interfaces. Using the λN-boxB system as a model, we show that editing by a fused TadA adenosine deaminase directly correlates with binding affinity between protein and RNA variants . Systematic variation of RNA sequence context reveals a strong bias for editing at UA dinucleotides by the engineered TadA8.20, mirroring wild-type TadA preferences. We further demonstrate that stepwise recruitment of the deaminase using nanobody and protein A/G fusions maintains both sequence and binding specificity. Stable expression of the TadA fusion in human cells reproduces editing patterns across a library of RNA variants. Finally, comprehensive single amino acid mutagenesis of λN in human cells reveals critical residues mediating RNA binding. Together, our results establish RNA recording as a versatile and scalable tool for dissecting protein-RNA interactions at nucleotide and residue resolution, both and in cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027372PMC
http://dx.doi.org/10.1101/2025.04.11.648485DOI Listing

Publication Analysis

Top Keywords

protein-rna interactions
12
rna recording
8
rna
8
rna variants
8
human cells
8
deaminase-based rna
4
recording enables
4
enables high
4
high throughput
4
throughput mutational
4

Similar Publications

RNA-protein interactions critically regulate gene expression and cellular processes, yet their comprehensive mapping remains challenging due to their structural diversity. We introduce PRIM-seq (protein-RNA interaction mapping by sequencing), a method for concurrent de novo identification of RNA-binding proteins and their associated RNAs. PRIM-seq generates unique chimeric DNA sequences by proximity ligation of RNAs with protein-linked DNA barcodes, which are subsequently decoded through sequencing.

View Article and Find Full Text PDF

We study how protein condensates respond to a site of active RNA transcription (i.e., a gene promoter) due to electrostatic protein-RNA interactions.

View Article and Find Full Text PDF

Distribution and Relative Size of Protein Binding Domains Cooperatively Influence Phase Separation of Protein-RNA Mixtures.

J Phys Chem B

September 2025

Hefei National Research Center for Physical Sciences at the Microscale and Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Multivalent protein-protein interactions play essential roles in mediating liquid-liquid phase separation (LLPS) that drives biomolecular condensate formation. Here, we systematically investigate how the spatial distribution and relative size of protein binding domains (PBDs) would influence LLPS in a mixture of spherical proteins and RNA single strands by using a patchy-particle polymer model, wherein each protein contains a fixed number of PBDs on the surface distributed closely or sparsely. Intriguingly, we find that LLPS behavior exhibits a nontrivial dependence on the cooperative interplay between PBD distribution and protein size: while sparsely distributed PBDs are more favorable to LLPS for small proteins, closely packed PBDs facilitate LLPS for larger counterparts.

View Article and Find Full Text PDF

Epithelial splicing regulatory protein 2 (ESRP2) plays a pivotal role in alternative splicing regulation, particularly in maintaining epithelial cell identity and suppressing epithelial-to-mesenchymal transition (EMT). Despite its biological significance, the structural basis for its RNA-binding specificity remains poorly understood. In this study, we report the solution structure and RNA-binding properties of the RNA Recognition Motif (RRM3) of human ESRP2 using an integrative approach combining nuclear magnetic resonance (NMR) spectroscopy, ITC, molecular docking, and MD simulations.

View Article and Find Full Text PDF

Biomolecular condensates (BMCs) are central to subcellular organization, influencing processes from RNA metabolism to the stress response and amyloid pathologies. Despite their near ubiquity, we still do not fully understand how the primary sequence of biomolecules influences the formation and dynamics of condensates. Here, we examine how cationic amino acid identity shapes the properties of protein-RNA coacervates.

View Article and Find Full Text PDF