Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Immune disease-associated non-coding SNPs, which often locate in tissue-specific regulatory elements, are emerging as key factors in gene regulation. Among these elements, long non-coding RNAs (lncRNAs) participate in many cellular processes, and their characteristics make these molecules appealing therapeutic targets. In this study, we have studied lncRNA in the context of neuronal cells, which is located in autoimmunity-associated region 2p15 and recently described to have a proinflammatory role in intestinal disorders. Using human brain samples and a wide variety of techniques, we have showed a differential function of this lncRNA in neuronal cells. We have further demonstrated the role of in maintaining hexokinase 2 (HK2) levels and thus mitochondrial integrity, partially explaining the implication of the lncRNA in multiple sclerosis (MS) pathogenesis. Our results show the importance of cell-type-specific studies in the case of regulatory lncRNAs. We present as a candidate for further studies as a mitochondrial dysfunction marker or possible therapeutic target in neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12023888PMC
http://dx.doi.org/10.1016/j.omtn.2025.102533DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
8
neuronal cells
8
inflammation-associated lncrna
4
lncrna induces
4
induces neuronal
4
neuronal damage
4
damage mitochondrial
4
dysfunction immune
4
immune disease-associated
4
disease-associated non-coding
4

Similar Publications

Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.

View Article and Find Full Text PDF

Parasitic diseases continue to be a major public health burden, particularly in low- and middle-income countries. With the emergence of drug-resistant strains and limitations of current therapies, there is a growing interest in natural products as alternative treatment options. Coumarins, a diverse class of plant-derived secondary metabolites, have shown significant potential as antiparasitic agents.

View Article and Find Full Text PDF

The A20 binding inhibitor of nuclear factor-kappa B (NF-κB)-1 (ABIN-1) serves as a ubiquitin sensor and autophagy receptor, crucial for modulating inflammation and cell death. Our previous in vitro investigation identified the LC3-interacting region (LIR) motifs 1 and 2 of ABIN-1 as key mitophagy regulators. This study aimed to explore the in vivo biological significance of ABIN1-LIR domains using a novel CRISPR-engineered ABIN1-ΔLIR1/2 mouse model, which lacks both LIR motifs.

View Article and Find Full Text PDF

Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.

View Article and Find Full Text PDF

Innovative, sustainable therapies are urgently needed for neglected vector-borne parasitic diseases. In this study, we leveraged cashew nutshell liquid (CNSL), an agro-industrial byproduct, to develop biobased phosphonium and ammonium salts (-) targeting parasite mitochondria. By combining CNSL-derived C8 alkyl chains with lipophilic cations, we synthesized novel compounds exhibiting highly potent and activity against and spp.

View Article and Find Full Text PDF