Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The performance of enameled wires has an important impact on new energy vehicle motors. The mainstream practice of existing technology is to improve partial discharge inception voltage (PDIV) by doping powder to inhibit corona and increase varnish thickness, the limitations of which are also obvious. Powder doping has the problem of dispersion stability, and increasing the varnish thickness affects the size and power density of the motor. In this paper, a novel insulation structure design was given. The electronic field stress was controlled by using different dielectric constant materials, and the dielectric constants can be controlled by adjusting the free volume of the polymer. Finally, we specifically create a preparation scheme to increase the corona voltage and the PDIV, without a loss of the breakdown margin of the enameled wire, and the simulation results show that the outermost electric field strength of the enameled wire model decreases by 22.11% and the enameled wire breakdown margin increases by 26.85%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12030633 | PMC |
http://dx.doi.org/10.3390/polym17081002 | DOI Listing |