Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low-grade tea, often underutilized due to its coarse texture and limited bioavailability, represents a significant resource waste. This study systematically investigated the synergistic effects of steam explosion (SE) and superfine grinding on enhancing the structural deconstruction, powder property, instant solubility, and diffusivity of low-grade. SE treatment induced critical physicochemical modifications, including hemicellulose degradation, lignin recondensation, and cellulose crystalline reorganization, which significantly weakened the lignocellulosic matrix. Subsequent superfine grinding via ball milling achieved ultrafine particles, with median diameter = 10.4 ± 0.17 μm, and almost completely destroyed the cell wall by 99.9%. Extraction kinetics revealed that SE-ball milling synergistically accelerated the diffusion behavior of bioactive compounds, reducing equilibrium time by 2~4 times and increasing maximum yields of polysaccharides, polyphenols, caffeine, and water-soluble solids by 9~25% compared to untreated samples. Homogenization combined with 0.08 mg/mL CMC-Na further improved the suspension stability of tea powder and reduced its centrifugal sedimentation to 9.85%. These findings demonstrate a scalable strategy to transform low-grade tea into high-value ingredients with enhanced accessibility and solubility of bioactive compounds, offering promising applications in instant beverages, fortified foods, and nutraceuticals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027473PMC
http://dx.doi.org/10.3390/foods14081345DOI Listing

Publication Analysis

Top Keywords

steam explosion
8
powder property
8
property instant
8
instant solubility
8
solubility diffusivity
8
tea powder
8
low-grade tea
8
superfine grinding
8
bioactive compounds
8
explosion enhances
4

Similar Publications

Insight into the stabilization of Pickering emulsion by modified soybean dietary fiber: Enhancing interaction forces and functional properties.

Int J Biol Macromol

September 2025

National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology & Business University, 100048, Beijing, China.; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beij

This study investigated the effects of steam exploration on soybean insoluble dietary fiber (U-IDF and M-IDF), and characterized the resulting stabilized Pickering emulsion. The particle size, ΔE, and water/oil holding capacity of M-IDF decreased, while its absolute value of zeta potential and contact angle increased. Significant changes in the intensities of the functional groups (-OH and CO) were observed in the Fourier transform infrared (FTIR) spectra of M-IDF.

View Article and Find Full Text PDF

Nowadays, insects are reared for food and feed. This idea includes the rearing of yellow mealworm ( L.).

View Article and Find Full Text PDF

Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical properties and bioactivity of PDFs from legumes, cereals, and other sources. Key modifications such as steam explosion, enzymatic hydrolysis, and carboxymethylation significantly improve solubility, porosity, and functional group exposure, thereby optimizing the health-promoting effects of legume-sourced dietary fiber.

View Article and Find Full Text PDF

Biochar has potential applications in steelmaking processes, but faces technical challenges such as low material density, high alkali content, and high reactivity compared to coal. This study explores converting the solid residue, following hydrothermal pretreatment-steam explosion (HTP-SE) of Miscanthus and other biomass feedstocks, into biochar to facilitate the replacement of coal in blast furnace and electric arc furnace operations. It is the first to demonstrate the enhanced combustion characteristics of pretreated fibre and the compatibility of the biochar for use in steelmaking.

View Article and Find Full Text PDF

Describing heterogeneous catalysis is complicated by the intricate interplay of processes that govern catalyst performance. The evolving chemical environment and the kinetics of catalyst's structural changes during reactions often lead to unknown local geometries and chemistry, which can shift reactivity over time. Here, we perform systematic experiments and apply a focused artificial-intelligence (AI) approach to model the measured time-on-stream-dependent reactivity of palladium-based bimetallic catalysts.

View Article and Find Full Text PDF