98%
921
2 minutes
20
Laccase production was evaluated in 108 fungal isolates recovered from the eastern coast of Saudi Arabia, a critical element in environmental biodegradation and biotransformation. The most active isolate was identified as MLK46 (GenBank accession no. PQ100161). It exhibited maximal productivity at pH 6.5, 30 °C, and incubation for 5 d, with 1% sodium nitrate and 1% galactose as the preferred nitrogen and carbon sources, respectively. Productivity was enhanced by NaCl, CuSO, and FeCl supplementation, with a maximum at 0.3 mM, 0.2 mM, and 61.7 mM concentrations, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for the purified enzyme through diethylaminoethyl (DEAE)-Sepharose chromatography revealed a prominent band at 71.1 kDa with maximum activity at pH 6 and stability at pH 6-9. Furthermore, it was optimally active at 50 °C and thermally stable at 50-80 °C with a half-life time () of 333.7 min to 80.6 min, respectively. Its activity was also enhanced by many metallic ions, especially Fe ions; however, it was inhibited by Hg and Ag ions. The enzyme demonstrated significant degradation of specific substrates such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), guaiacol, -dianisidine, and 2,6-dichlorophenol, with a kinetic efficiency constant which ranged from 40.95 mM s to 238.20 mM s. UV spectrophotometry confirmed efficient oxidation peaks by electron transition against guaiacol (at 300 nm), -dianisidine (at 480 nm), ABTS (at 420 nm), and 2,6-dichlorophenol (at 600 nm). The results collectively demonstrate the potential of laccase from MLK46 as a promising agent for the effective biodegradation of several industrial pollutants under extreme conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12024561 | PMC |
http://dx.doi.org/10.3390/biology14040402 | DOI Listing |
Chembiochem
September 2025
Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Mangiagalli 25, 20133, Milan, Italy.
This study investigates the synthesis of aromatic nitriles using an evolved variant of OxdF1 (L318F/F306Y), an aldoxime dehydratase from Pseudomonas putida F1, engineered for improved catalytic efficiency toward benzaldehyde oxime. The double OxdF1 (L318F/F306Y) mutant effectively catalyzes the conversion of various benzaldoxime derivatives to the corresponding nitriles. Due to the enzyme's inherent instability, immobilized whole-cell systems are employed in a flow reactor to improve its stability and broaden its applicability, with the biotransformation of benzaldehyde oxime and 2,6-difluorobenzaldehyde oxime serving as case studies.
View Article and Find Full Text PDFAAPS PharmSciTech
September 2025
Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
The chimpanzee adenovirus-vectored vaccine developed by the University of Oxford (ChAdOx1 nCoV-19) showed good stability when stored in refrigerator. However, the vaccine manufacturer prefers its transportation in frozen condition. Data regarding the stability of the vaccine after exposure to repeated freezing processes have not been explored yet.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States.
Supercoiled (Sc) circular DNA, such as plasmids, are essential in molecular biology and hold strong therapeutic potential. However, they are typically produced in Escherichia coli, resulting in bacterial methylations, unnecessary sequences, and contaminants that hinder certain applications including clinical uses. These limitations could be avoided by synthesizing plasmids entirely in vitro, but synthesizing high-purity Sc circular DNA biochemically remains a significant technical challenge.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China. Electronic address:
Pancreatic adenocarcinoma (PAAD) lacks effective therapies due to complex macromolecular signaling networks. Here, we identified the natural compound Trienomycin A (TA) as a potent binder and degrader of the key signaling adaptor protein Insulin Receptor Substrate 1 (IRS1), disrupting its macromolecular assembly in insulin-like growth pathways. Through integrated biochemical, cellular, and in vivo analyses, we demonstrated that TA directly bound the phosphotyrosine-binding (PTB) domain of IRS1, inducing proteasomal degradation of this critical macromolecular hub mediated by the E3 ubiquitin ligase FBXW8.
View Article and Find Full Text PDFJ Adv Res
September 2025
School of Public Health and Nursing, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China. Electronic address:
Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents an increasing global health problem in association with obesity and insulin resistance without approved pharmacotherapy. Previous studies revealed malic enzyme 1 (ME1) as a susceptibility gene for metabolic disorders in humans. However, the role and mechanisms of ME1 in regulating hepatic lipid metabolism remain largely unclear.
View Article and Find Full Text PDF