98%
921
2 minutes
20
This study integrates blockchain technology into smart agriculture to enhance its productivity and sustainability. By combining blockchain with remote sensing, artificial intelligence (AI), and the Internet of Things (IoT), a Human-Cyber-Physical System (H-CPS) architecture tailored for agricultural applications is proposed. It supports real-time crop management, data-driven decision-making, and transparent trading of agricultural products. A semantic-based blockchain framework is introduced to address challenges in data management and AI model integration, optimizing production, improving traceability, reducing costs, and enhancing financial security. This framework directly addresses real-world agricultural challenges, such as optimized irrigation, improved crop breeding efficiency, and enhanced supply chain transparency. These innovations provide practical solutions for modern agriculture, contributing to sustainable development and global food security. Further research and collaboration are encouraged to unlock its full potential in transforming agricultural practices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279166 | PMC |
http://dx.doi.org/10.1002/advs.202503102 | DOI Listing |
Adv Sci (Weinh)
July 2025
National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, 572024, China.
This study integrates blockchain technology into smart agriculture to enhance its productivity and sustainability. By combining blockchain with remote sensing, artificial intelligence (AI), and the Internet of Things (IoT), a Human-Cyber-Physical System (H-CPS) architecture tailored for agricultural applications is proposed. It supports real-time crop management, data-driven decision-making, and transparent trading of agricultural products.
View Article and Find Full Text PDFSensors (Basel)
January 2024
Department of Physics, University of North Texas, Denton, TX 76201, USA.
This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber-physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT).
View Article and Find Full Text PDFJ Signal Process Syst
October 2021
Department of Computer Science & Engineering, University of North Texas, Denton, TX USA.
The recent COVID-19 outbreak highlighted the requirement for a more sophisticated healthcare system and real-time data analytics in the pandemic mitigation process. Moreover, real-time data plays a crucial role in the detection and alerting process. Combining smart healthcare systems with accurate real-time information about medical service availability, vaccination, and how the pandemic is spreading can directly affect the quality of life and economy.
View Article and Find Full Text PDF