98%
921
2 minutes
20
Masked autoencoder (MAE) has demonstrated its effectiveness in self-supervised point cloud learning. Considering that masking is a kind of corruption, in this work we explore a more general denoising autoencoder for point cloud learning (Point-DAE) by investigating more types of corruptions beyond masking. Specifically, we degrade the point cloud with certain corruptions as input, and learn an encoder-decoder model to reconstruct the original point cloud from its corrupted version. Three corruption families (i.e., density/masking, noise, and affine transformation) and a total of 14 corruption types are investigated with traditional non-Transformer encoders. Besides the popular masking corruption, we identify another effective corruption family, i.e., affine transformation. The affine transformation disturbs all points globally, which is complementary to the masking corruption where some local regions are dropped. We also validate the effectiveness of affine transformation corruption with the Transformer backbones, where we decompose the reconstruction of the complete point cloud into the reconstructions of detailed local patches and rough global shape, alleviating the position leakage problem in the reconstruction. Extensive experiments on tasks of object classification, few-shot learning, robustness testing, part segmentation, and 3-D object detection validate the effectiveness of the proposed method. The codes are available at https://github.com/YBZh/Point-DAE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2025.3557055 | DOI Listing |
Phys Chem Chem Phys
September 2025
Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhna - Magdalla Road, Surat-395007, Gujarat, India.
This work reports the nanoscale micellar formation in single and mixed surfactant systems by combining an amphiphilic graft copolymer, Soluplus® (primary surfactant), blended with other polyoxyethylene (POE)-based nonionic surfactants such as Kolliphor® HS15, Kolliphor® EL, Tween-80, TPGS®, and Pluronics® P123 in an aqueous solution environment. The solution behaviour of these surfactants as a single system were analyzed in a wide range of surfactant concentrations and temperatures. Rheological measurements revealed distinct solution behaviour in the case of Soluplus®, ranging from low-viscosity () and fluid-like behavior at ≤20% w/v to a highly viscous state at ≥90% w/v, where the loss modulus ('') exceeded the storage modulus (').
View Article and Find Full Text PDFNeurology
September 2025
Florey Department of Neuroscience and Mental Health, University of Melbourne, Australia.
Background And Objectives: Stroke is a leading cause of long-term disability. Etanercept, a competitive tumor necrosis factor-α inhibitor, has been proposed as a potential treatment for post-stroke impairments when given through a perispinal subcutaneous injection. We aimed to evaluate the safety and efficacy of perispinal etanercept in patients with chronic stroke.
View Article and Find Full Text PDFPLoS One
September 2025
School of Mechanical and Electrical Engineering, China University of Mining and Technology (Beijing), Beijing, China.
Multi-modal data fusion plays a critical role in enhancing the accuracy and robustness of perception systems for autonomous driving, especially for the detection of small objects. However, small object detection remains particularly challenging due to sparse LiDAR points and low-resolution image features, which often lead to missed or imprecise detections. Currently, many methods process LiDAR point clouds and visible-light camera images separately, and then fuse them in the detection head.
View Article and Find Full Text PDFJ Biomed Opt
September 2025
Guangdong University of Technology, Institute of Advanced Photonics Technology, School of Information Engineering, Guangzhou, China.
Significance: Accurate cell classification is essential in disease diagnosis and drug screening. Three-dimensional (3D) voxel models derived from holographic tomography effectively capture the internal structural features of cells, enhancing classification accuracy. However, their high dimensionality leads to significant increases in data volume, computational complexity, processing time, and hardware costs, which limit their practical applicability.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
September 2025
Estimating dense point-to-point correspondences between two isometric shapes represented as 3D point clouds is a fundamental problem in geometry processing, with applications in texture and motion transfer. However, this task becomes particularly challenging when the shapes undergo non-rigid transformations, as is often the case with approximately isometric point clouds. Most existing algorithms address this challenge by establishing correspondences between functions defined on the shapes, rather than directly between points, because function mappings admit a linear representation in the spectral domain.
View Article and Find Full Text PDF