Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This paper proposes an efficient HOT algorithm for solving the optimal transport (OT) problems with finite supports. We particularly focus on an efficient implementation of the HOT algorithm for the case where the supports are in $\mathbb {R}^{2}$R2 with ground distances calculated by $L_{2}^{2}$L22-norm. Specifically, we design a Halpern accelerating algorithm to solve the equivalent reduced model of the discrete OT problem. Moreover, we derive a novel procedure to solve the involved linear systems in the HOT algorithm in linear time complexity. Consequently, we can obtain an $\varepsilon$ɛ-approximate solution to the optimal transport problem with $M$M supports in $O(M^{1.5}/\varepsilon )$O(M1.5/ɛ) flops, which significantly improves the best-known computational complexity. We further propose an efficient procedure to recover an optimal transport plan for the original OT problem based on a solution to the reduced model, thereby overcoming the limitations of the reduced OT model in applications that require the transport plan. We implement the HOT algorithm in PyTorch and extensive numerical results show the superior performance of the HOT algorithm compared to existing state-of-the-art algorithms for solving the OT problems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2025.3564353 | DOI Listing |