98%
921
2 minutes
20
Xylanases are crucial for the breakdown of hemicellulose, enabling the conversion of lignocellulosic biomass into fermentable sugars for biofuels and other industrial applications. For the first time, we investigated the biochemical and genetic characteristics of 22 xylanase genes from within glycoside hydrolase (GH) families GH10, GH11, and GH43. Xylanase genes structural diversity clustered the phylogenetic tree into GH10, GH11, GH43-I, and GH43-II groups. Structural analysis revealed that all and genes contained conserved GH domains, with CBM1 present in and . Secondary domains, including CBM35, CBM42, and CBM91, were found in the GH43 gene family. The presence of key glutamic (Glu) and aspartic (Asp) residues in active sites is essential for substrate binding and catalysis. RT-qPCR analysis revealed substrate-dependent gene expression, with peak upregulation on day three in beechwood xylan (BWX) cultures and day two in corncob xylan (CCX) and rice straw (RS) cultures. Consistent with these findings, enzymatic assays demonstrated the highest xylanase activity in BWX-induced cultures, followed by RS and CCX, underscoring the differential regulation of these enzymes in response to distinct hemicellulosic substrates. These findings provide valuable insights into the structural, functional, and regulatory mechanisms of xylanases, facilitating their industrial application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028744 | PMC |
http://dx.doi.org/10.3390/jof11040250 | DOI Listing |
Biosci Biotechnol Biochem
September 2025
Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.
Lignocellulosic biomass is a carbon-neutral resource crucial to advancing a bio-based economy. The filamentous fungus Talaromyces cellulolyticus demonstrates superior biomass saccharification efficiency compared to conventional enzyme-producing fungi, making it a promising host for enzymatic biomass conversion. To enable molecular studies, we developed a robust genetic transformation system for T.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
The gram-positive bacterium is widely used for enzyme production, especially due to its superior protein secretion capacity. In this study, we have investigated how efficient transcriptome analysis can identify general and protein-specific secretion stress. For this, we constructed strains overproducing different commercially relevant proteins, including a GFP-specific camelid nanobody (GFPnb), the xylanase XynA and the protein glutaminase PrgA, and expressed these proteins either from the strong constitutive P promoter or from the xylose-inducible P promoter.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan.
Background: Pear scab, caused by Venturia nashicola, is one of the most serious diseases affecting Asian pear (Pyrus spp.) production. While single-gene resistance has been used in breeding, it is often overcome by evolving pathogens.
View Article and Find Full Text PDFPLoS One
August 2025
Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, Hubei, P.R.China.
Background: Composting is a transformation and biodegradation process that converts organic biomass into valuable products while also removing antimicrobial resistance genes (ARGs). Promoting lignocellulose biodegradation is essential for enhancing composting efficiency and improving the quality of compost derived from agricultural organic waste. This study aims to explore the effects of cellulase and xylanase on the composting process of cow manure, with a focus on their impact on key physicochemical properties, microbial communities, and antibiotic resistance genes (ARGs).
View Article and Find Full Text PDFJ Biosci Bioeng
August 2025
Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
White-rot fungi secrete unique enzymes to degrade plant cell wall components. These enzymes have the potential to improve the effective utilization of lignocellulosic biomass in a bio-based society. In our previous study, pkac2-disrupted strains of Pleurotus ostreatus were applied for high-density liquid culture by improving mycelial dispersibility.
View Article and Find Full Text PDF